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Abstract

A leader wants to enact a general-interest policy but needs the support of q members

of a committee who oppose the policy with heterogenous intensities. The leader sequen-

tially approaches the committee members: in each period, she chooses which member

to approach and what offer to make in exchange for his vote. We analyze two variants,

depending on the nature of the offer. In the transfer-promise model, the leader pays the

accepted offers only if she puts the policy to a vote; in the up-front-payment model, she

pays the accepted offers immediately even if she does not put the policy to a vote even-

tually. In the transfer-promise model, the policy passes in equilibrium if and only if the

leader’s gain is higher than the sum of the losses of the q members who are least opposed;

whenever the policy passes in equilibrium, the leader makes offers close to zero to the set of

members who are least opposed to the policy, and the optimal sequence may require her to

first approach the most-opposed member among the set. In the up-front-payment model,

however, the leader does not necessarily buy the votes of the least-opposed members. The

equilibrium now features two phases: in the first phase, each approached member is indis-

pensable and thus compensated fully for his vote; in the second phase, each approached

member in dispensable and thus offered a payment close to zero. Even though the leader

may pay a significant amount for a vote, she is better off with the instrument of up-front

payments because it is a commitment device that allows her to pass policy that she would

not be able to with transfer promises. We also discuss extensions that allow simultaneous

offers and bargaining with coalitions.
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1 Introduction

It is common practice for political leaders to use targeted district benefits, also known as

pork, to gain support of specific voting members or voting blocks on general-interest legis-

lation and public policy. As a well-known example, President Lyndon B. Johnson secured

the critical support of Charles Halleck, Republican Congressman of Indiana, in passing

the Civil Rights Act by offering him a NASA research facility at Purdue University.1 For

a comprehensive discussion of many other examples and empirical analyses of how pork

barrel projects have been used to build majority coalitions in the U.S. Congress to enact

public policies, see the book by Evans [2004].

We refer to this practice as “vote buying” in this paper. We introduce a simple game-

theoretical model to capture certain essential elements of the sequential bargaining process

which involves multiple members who collectively decide on the outcome of a policy of

general interest. In our model, a leader, who would like to enact a new policy and needs

q votes for it to pass, approaches members with varying degrees of opposition to the

policy sequentially, making an offer to each member in exchange for his vote. If a member

accepts an offer, then he commits to voting yes when the policy is up for a vote. Since the

members are heterogeneous in their preferences, which members’ votes should the leader

buy? In what sequence should the leader approach them? How much do the votes cost

and under what conditions will the policy get successfully enacted?

We address these questions in two variants of our model that differ in terms of the

nature of the leader’s offer. In the transfer-promise model, the leader’s offer is a promise

to make a transfer if a vote on the policy is held in exchange for the member’s vote. This

applies, for example, when the final bill that the members vote on bundles the policy and

the transfers together. In the up-front-payment model, the leader’s offer is an up-front

payment in exchange for the member’s vote, which is not contingent on whether the leader

decides to put the policy up for a vote. This is more appropriate when the leader’s transfer

offer is separate from the bill that involves the policy.

1See, for example, https://www.theatlantic.com/magazine/archive/2014/04/what-the-hells-the-presidency-
for/358630/.
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In the transfer-promise model, we find that the policy passes if and only if the leader’s

gain is higher than the sum of the losses of the q members who are least opposed to

the policy. Strikingly, whenever the leader is successful in getting the policy passed, the

payments that she makes to the approached members are close to zero in equilibrium.

This result is reminiscent of Dal Bó [2007], but arises from a different reason. Specifically,

unlike Dal Bó [2007], in which a critical assumption is that a contract offered to a member

is contingent on the profile of other members’ votes (in particular, the amount of transfer

explicitly depends on whether the member’s vote turns out to be pivotal), the offers in our

model take a simpler form. The intuition behind nearly zero equilibrium payments in our

model is as follows: whenever a member is approached in equilibrium, he is “dispensable”

in the sense that if he rejects the offer, the policy still passes in equilibrium; and this

dispensability implies that his rejection only delays the passing of the policy and therefore

he would accept an offer close to zero when he is sufficiently patient. It is interesting

to note that the amount that the leader pays has little to do with the condition for the

policy to pass in equilibrium: even though the leader needs to pay only minimal amount,

in order for the policy to pass, her gain still has to surpass the sum of the losses of a

certain subset of members.

Whose votes should the leader try to buy? One immediate response might be that

the leader should buy the votes of those least opposed to the policy. This is largely borne

out in the transfer-promise model. Specifically, without loss of generality, let us order

the members in terms of their intensity of opposition to the policy so that higher index

indicates higher intensity. If the qth member is dispensable at the beginning of the game,

then an optimal sequence for the leader is to approach the q members who are least

opposed to the policy in descending order: this sequence guarantees that every member is

dispensable along the sequence, implying that the leader cannot buy q votes with a lower

total offer since these are the q members who have the lowest losses. If the qth member

is indispensable at the beginning of the game, however, this is no longer feasible. In this

case, we show that the (q+ 1)th member is dispensable at the beginning of the game and

the leader should approach the (q + 1)th member first and then approach those (q − 1)
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members who are least opposed. Again, by doing this, she ensures that every member is

dispensable along the sequence and therefore will accept offer close to 0.

In the up-front payments model, however, it is no longer the case that the leader

buys the votes of those members who are least opposed to the policy. The structure of

equilibrium differs from that in the transfer-promise model now that an accepted offer is

sunk cost for the leader. We show that the equilibrium now features two phases: in the

first phase, each approached member is “indispensable” in the sense that if he rejects the

offer, the policy does not pass in equilibrium and therefore needs to be compensated fully

for his losses when the leader buys his vote (referred to as the temptation phase); but

as soon as some member becomes dispensable, the equilibrium enters the second phase

in which any approached member is dispensable until the leader secures enough votes for

the passage of the policy. In this phase, the members are offered payments close to zero,

just like in the transfer-promise model (referred to as the exploitation phase).

To answer the question what members’ votes the leader should buy, note that since

the payments made in the exploitation phase are negligible as players become sufficiently

patient, the leader’s goal is to minimize the total payment she makes in the temptation

phase. Our equilibrium characterization illustrates the basic tradeoff that the leader faces:

the temptation phase is longer when members included in that phase are less opposed to

the policy and shorter when members approached in that phase are more opposed to the

policy. This is because a member is more likely to be indispensable if the other members

are more strongly opposed to the policy. This highlights the fact that the endogenous

sequencing creates endogenous cost of buying a vote.

Even though the leader may end up paying certain members a significant amount

in exchange for their votes in the up-front payments model whereas she always pays a

negligible amount in the transfer-promise model, the leader is better off if she can offer

up-front payments instead of transfer promises. This is related to the result that in

both models, when the leader has a higher gain from the policy (a higher willingness to

pay), it is easier for the policy to pass and moreover, the cost of buying votes is lower

in equilibrium. Since up-front payment is sunk cost, the leader’s willingness to pay does
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not diminish as she secures more votes and this allows the leader to get the policy passed

when it would not otherwise with transfer promises. So up-front payment can be deployed

as a commitment device on the part of the leader.

Related literature. Our paper is related to three strands of literature. The first is the

literature on vote buying. Most of this literature analyzes a model with two vote buyers

who move sequentially. The vote buyers either move once [Groseclose and Snyder 1996;

Banks 2000; Le Breton and Zaporozhets 2010; Le Breton, Sudholter, and Zaporozhets

2012] or repeatedly [Dekel, Jackson, and Wolinsky 2008, 2009; Morgan and Vardy 2011,

2012]. Unlike in our paper, a vote buyer’s move consists of simultaneous offers to all vote

sellers and vote sellers make their selling decisions simultaneously immediately before the

game ends.2 These papers either predict that ‘near-median’ voters sell their votes or do

not make a prediction regarding the identity of the players who sell their votes. Different

from the rest of the vote-buying literature, the strategic interaction between vote sellers

is important in Neeman [1999] and Dal Bó [2007], but they do not address the question

of endogenous sequencing.

The second strand of literature our paper is related to is multi-agent contracting with

externalities. A typical application in this literature considers an incumbent firm trying

to sign exclusionary contracts with buyers in order to prevent entry by its competitors.

Unlike our paper, most of this literature either does not consider sequential nature of

contracting [Bernheim and Whinston 1998; Segal 1999, 2003; Bernstein and Winter 2012]

or assumes homogeneity of the members [Rasmusen, Ramseyer, and Wiley 1991; Rasmusen

and Ramseyer 1994; Segal and Whinston 2000; Fumagalli and Motta 2006; Genicot and

Ray 2006; Chen and Shaffer 2014; Iaryczower and Oliveros 2017, 2019].3 Two exceptions

are Möller [2007] and Galasso [2008], but they restrict attention of sequential contracting

to two members.

The third strand of related literature is bargaining with endogenous sequencing. A

2Spenkuch, Montagnes, and Magleby [2018] consider an extension of Dekel et al. [2009] in which the vote
buyers approach vote sellers sequentially in a predetermined order and show that the main predictions of Dekel
et al. [2009] continue to hold.

3See Whinston [2006] and Rey and Tirole [2007] for surveys of this literature.
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typical model in this literature studies a situation in which one player bargains with other

n players sequentially. For tractability, papers in this literature often either work with a

set of exogenously given sequences [Horn and Wolinsky 1988; Stole and Zwiebel 1996] or

restrict attention to the case of n = 2 [Marshall and Merlo 2004; Menezes and Pitchford

2004; Noe and Wang 2004; Marx and Shaffer 2007; Bedre-Defolie 2012; Krasteva and

Yildirim 2012a,b, 2019; Göller and Hewer 2015]. Cai [2000, 2003], Li [2010] and Xiao

[2018] allow for the bargaining sequence to arise endogenously but, unlike our paper,

focus on the case in which an agreement with all of the n players need to be reached

(unanimity).

2 Model

A leader wants to pass a new policy. She sequentially approaches the members of a

committee. With each approached member, she tries to reach a bilateral agreement,

offering a transfer in return for the member’s support. All actions are observable.

Formally, the game is played by the leader and a set of committee members N =

{1, . . . , n}, where n ≥ 1. Passing the policy requires q ∈ {1, . . . , n} votes from the com-

mittee members (other than the leader). Each player’s payoff from the status quo is

normalized to be 0. The payoff from the new policy is y > 0 for the leader and −xi for

each member i ∈ N . We assume that xi > 0 for each i ∈ N and index the committee

members such that xi ≤ xi+1, so a member with a higher index is more strongly opposed

to the policy.4

The leader approaches the committee members in consecutive periods. Suppose that

at the beginning of a period, the set of un-approached members is U and the number

of approached members who have accepted the offers is na. The leader can choose to

approach a member in U , or initiate a vote or stop. If the leader decides to approach

a member i ∈ U , then she offers him a non-negative transfer in exchange for his vote.

Member i either accepts the offer, thus giving the leader control of his vote, or rejects the

4Assuming that xi > 0 is without loss of generality since any member with xi ≤ 0 prefers the new policy to
the status quo and can thus be ignored in the analysis.
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offer, and the game proceeds to the next period. If the leader decides to initiate a vote,

the policy passes if na ≥ q and the status quo is maintained if na < q, and the game ends.

If the leader decides to stop, the policy does not pass and the game ends. We consider

two variants of this game which differ in terms of the nature of the leader’s offer.

(1) Transfer promises: the leader’s offer is a promise to make a transfer if and when a

vote on the policy is held in exchange for the member’s vote.5

(2) Up-front payments: the leader’s offer is an up-front payment in exchange for the

member’s vote.

In the transfer-promise game, the leader does not make a payment if she chooses not

to put the policy to a vote in the end, and therefore the transfer promises are non-sunk

cost. In the up-front-payment game, the transfer is made irrespective of whether or not a

vote on the policy is held. In this sense, the payment is sunk cost to the leader.

The game ends either when the leader stops or a vote is held on the policy. To describes

the players’ payoffs at the terminal nodes, let Na be the set of members who accepted the

leader’s offers and for each i ∈ Na, let τi be the period in which the offer ti was accepted.

If a vote is held, let τ denote the period. We assume that the players have a common

discount factor δ ∈ (0, 1).

First consider the transfer-promise game. If no vote is held by the end of the game,

each player receives a payoff of 0. If a vote is held and the policy passes, the leader receives

a payoff of δτ−1(y −
∑

i∈Na
ti), and member i receives a payoff of δτ−1(ti − xi) if i ∈ Na

and δτ−1(−xi) if i /∈ Na. If a vote is held and the policy does not pass, the leader receives

a payoff of δτ−1(−
∑

i∈Na
ti), and member i receives a payoff of δτ−1(ti) if i ∈ Na and 0 if

i /∈ Na.

In the up-front-payments game, if no vote is held or is held but the policy does not

pass, the leader receives a payoff of −
∑

i∈Na
δτi−1ti, and member i receives a payoff of

δτi−1ti if i ∈ Na and 0 if i /∈ Na. If a vote is held and the policy passes, the leader receives

5An alternative assumption is for the leader’s offer to be a promise to make a transfer if and when the
policy passes in exchange for the member’s vote. The equilibria under this assumption are outcome equivalent.
Specifically, under this alternative assumption there could be an equilibrium in which the leader initiates a vote
anticipating that the policy would not pass. This is outcome equivalent to stopping under our assumption,
which we choose for analytical simplicity.
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a payoff of δτ−1y −
∑

i∈Na
δτi−1ti, and member i receives a payoff of −δτ−1xi + δτi−1ti if

i ∈ Na and −δτ−1xi if i /∈ Na.

In the transfer-promise game, the transfers are paid when a vote on the policy is held

and hence the payoffs from the policy and from the transfers are discounted by the same

factor. In contrast, in the up-front-payment game, the transfers are paid immediately

upon the acceptance of the offers while the passage of the policy happens only at the end

of the game and hence the payoffs from the policy and from the transfers are discounted

by different factors.6

All histories are public and record identity of the approached members, the transfers

offered and members’ acceptance decisions. Strategies are maps from histories to available

actions. The solution concept we use is subgame perfect equilibrium (in which a member

who is indifferent between accepting and rejecting accepts).7 For the rest of the paper,

we simply use the term equilibrium to refer to this solution concept.

The model we study assumes that offers and acceptance decisions are public, that

the leader has all the bargaining power,8 and cannot re-approach members.9 Relaxing

any of these assumptions, while certainly interesting, would significantly complicate the

analysis and obscure the main strategic forces we study below. In Section 5 we study two

extensions of our model relaxing the assumption that the leader approaches one member

in each period and the assumption that each member controls one vote.

We introduce the notion of states to facilitate the analysis. Recall that a history at the

6With up-front payments, whether the transfers are paid immediately or at the end of the game is a modelling
choice. Working with immediate payments simplifies the analysis because it implies that past leader’s accepted
offers do not influence leader’s optimal action at a history.

7This refinement restricts the behavior of an indifferent member who is not approached on the equilibrium
path. It is not needed in some well-known bargaining games, e.g., the ultimatum game, because the responder
is always approached on the equilibrium path. The refinement does not change the set of equilibria that are
observationally equivalent because for any subgame perfect equilibrium one can construct an outcome equivalent
subgame perfect equilibrium in which indifferent members accept.

8Iaryczower and Oliveros [2019] study how the allocation of bargaining power affects contractual outcomes
between a principal and multiple agents.

9Segal and Whinston [2000] and Genicot and Ray [2006] allow for re-approaching in models of contracting
with externalities. Re-approaching has offsetting effect on the leader’s ability to contract with the members; it
makes members more demanding because the leader is no longer committed not to re-approach them, and it
makes members less demanding because it intensifies competition among the members. In Segal and Whinston
[2000] the latter effect dominates and re-approaching benefits the leader, while it has opposite effect in Genicot
and Ray [2006].
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beginning of a period records the set of members who have been previously approached,

the transfers offered to them, and the members’ acceptance decisions. For the model with

transfer promises, a state is (S, r, t), where S ⊆ N , S 6= ∅, r ∈ {1, . . . , q} and t ≥ 0,

corresponds to a set of histories such that the set of members who have been previously

approached is N \ S, the number of members who have sold their votes to the leader is

q − r and the sum of the promised transfers to these members is t. That is, state (S, r, t)

corresponds to histories in which the set of un-approached members is S, the leader still

needs support from r members in order for the policy to pass and the leader has already

promised to pay a total of t to the members who have accepted the offers. For the model

with up-front payments, we do not include the transfers that are already accepted and

paid in a state since they do not affect the equilibria in the subgames. Hence, we denote

a state by (S, r) in the up-front-payment model. Let S = {(S, r, t) ∈ 2N × Z × R+|S 6=

∅ ∧ 1 ≤ r ≤ |S|} be the set of all states (dropping the R+ dimension for the sunk cost

model).10 Note that given any state in S and any two histories inducing that state, the

subgames following the two histories are identical and hence the two subgames have the

same set of equilibria. Let Γ(S, r, t) denote a subgame starting with state (S, r, t) in the

transfer-promise model and Γ(S, r) denote a subgame starting with state (S, r) in the

up-front-payment model. Then the entire game is Γ(N, q, 0) in the transfer-promise game

and Γ(N, q) in the up-front-payment game.

3 Transfer promises

We begin by studying the model in which the leader offers a transfer promise in exchange

for a member’s vote. We first establish conditions under which the policy passes in equi-

librium and then characterize the optimal sequence in which the leader approaches the

members and how much transfer promises she offers them in equilibrium.

10There are states not in S that could arise in the extensive form: for example, there are subgames in which
r > |S|, but since they are not interesting to analyze, we exclude them from S.
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3.1 When does the policy pass?

Consider a subgame Γ(S, r, t). Proposition 1 below says that whether the policy passes

in equilibrium depends on how the leader’s gain (net of the transfer promises already

accepted) compares with the sum of the losses of the r members in S who are least

opposed to the policy. Applying this result to the whole game immediately implies that

whether the policy passes in equilibrium depends on whether the leader’s gain from the

policy is strictly higher than the sum of the losses of the q members who are least opposed

to the policy.

Given S ⊆ N and 0 ≤ r ≤ |S|, let Sr ⊆ S denote the set of the r members in S who

have the lowest losses from the policy. Let Sr = ∅ if r = 0.

Proposition 1. Suppose the leader offers transfer promises. Consider a subgame Γ(S, r, t)

where r ≤ |S|. In any equilibrium, (a) if y − t >
∑

j∈Sr xj, the policy passes, and (b) if

y − t <
∑

j∈Sr xj, the policy does not pass.

To gain some intuition for part (a), note that a member i would accept an offer greater

than his loss.11 Hence, when the leader needs r votes, if her gain from the policy (net of

the transfer promises that have already been offered and accepted) is larger than the sum

of r members’ losses, she can guarantee a strictly positive payoff by approaching these r

members at the end (so that each understands that he is pivotal) and making each an

offer that just compensates for the loss. Since the leader’s payoff is only 0 when the policy

does not pass, she is better off if she buys these members’ votes and therefore the policy

passes in any equilibrium.

For part (b), it is straightforward to see that if the cardinality of S equals r (corre-

sponding to unanimity), then the leader needs the vote of every member in S, who will

accept an offer only if it at least compensates for the member’s loss. Hence, if the leader’s

gain from the policy (net of the transfer promises already accepted) is lower than the

sum of the members’ losses, then she can only receive a negative payoff by getting the

policy passed, whereas she receives a payoff of 0 if the policy does not pass. Given that

11If we restrict attention to undominated strategies, then clearly a member i would accept an offer greater
than his loss, but our result still holds even if weakly dominated strategies are allowed.
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the leader is better off if the policy does not pass and she can choose to stop, the policy

does not pass in any equilibrium. If cardinality of S is equal to r + 1, then the member

approached in the first period will accept an offer only if it at least compensates for his

loss since the member foresees that without his support, the policy will not pass in the

continuation game. Since every member can reason like this and thus demands an offer

that makes him at least even, again the leader cannot buy enough votes without offering

transfer promises that exceed her gain from the policy. Induction shows that the policy

does not pass in any equilibrium.

3.2 Equilibrium sequencing with transfer promises

We have established in Proposition 1 that if y >
∑q

i=1 xi, then the policy passes in

any equilibrium. In what sequence should the leader approach the members and what

transfer promises does she offer them in equilibrium? These are the questions we address

in this subsection. The answer is immediate under unanimity (q = n): the leader offers

each member i a transfer promise equal to xi and the sequence of approaching does not

matter. In what follows, we consider q < n. It is useful to introduce the notion of

“(in)dispensability.”

Definition 1. In the transfer-promise game, consider state (S, r, t) where r < |S|. (a)

We say that member i ∈ S is indispensable in (S, r, t) if
∑

j∈Sr xj < y − t <
∑

j∈Sr
−i
xj.

(b) We say that member i ∈ S is dispensable in (S, r, t) if y − t >
∑

j∈Sr
−i
xj.

Intuitively, a member is indispensable in a state if the policy does not pass in equilib-

rium without the leader securing the member’s vote in that state whereas a member is

dispensable in a state if the policy still passes in equilibrium even without the leader se-

curing the member’s vote in that state. A member’s strategic position is stronger when he

is indispensable than when he is dispensable. When a member is indispensable, he accepts

the leader’s offer only if it at least compensates for his loss since by rejecting the offer, the

policy will fail to pass. When a member is dispensable, however, he anticipates that the

policy still passes even if he rejects the offer. Since his rejection only delays the passage of
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the policy, he is willing to accept an offer that just compensates him for a sooner passage

((1 − δ)xi to member i). Note that when δ is sufficiently high, a dispensable member is

willing to accept an offer close to 0, an offer lower than any offer that the leader needs to

make in order to secure an indispensable member’s vote, no matter what that member’s

loss is.

Fix a transfer-promise game and suppose that the policy passes in equilibrium. Let

Ad denote the set of members who are dispensable at the beginning of the game. Note

that since the policy passes in equilibrium, that is, y >
∑q

i=1 xi, any member in {q +

1, q + 2, ..., n} is in Ad. As Proposition 2 below shows, what members’ votes the leader

buys depends on whether the qth member is in Ad.

If the qth member is in Ad, then it is optimal for the leader to approach the members

who have the lowest q losses. She should start by approaching a member in Ad ∩{1, ..., q}

since he is dispensable; after buying this member’s vote, every remaining member i in

{1, ..., q} becomes dispensable and therefore will accept an offer (1− δ)xi, and the leader

can approach them in an arbitrary sequence. Since the members being approached in this

sequence have the lowest losses among all members, the leader cannot improve her payoff

by approaching others.

If the qth member is not in Ad, then any member with a lower loss is also not in Ad.

Hence, if the leader starts by approaching any of them, she has to make an offer equal

to the loss. However, since member (q + 1) is in Ad, she only needs to offer (1 − δ)xq+1.

Moreover, after securing this member’s vote with a transfer promise close to 0, any member

in {1, 2, ..., q} becomes dispensable in the continuation game, and therefore it is optimal for

the leader to approach the members who have the lowest (q−1) losses in the continuation

game in an arbitrary sequence. The following proposition formalizes the results.

Proposition 2. In the transfer-promise game, suppose n > q and y >
∑q

i=1 xi.

(a) If y >
∑q−1

i=1 xi + xq+1, that is, member q is dispensable at the beginning of the game,

then in any equilibrium, the leader starts by approaching a member in Ad ∩ {1, ..., q}

and then approaches the remaining members in {1, ..., q} in arbitrary order; when she

approaches member i, she offers ti = (1− δ)xi and it is accepted.
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(b) If y <
∑q−1

i=1 xi + xq+1, that is, member q is indispensable at the beginning of the

game, then there exists δ̄ < 1 such that for δ > δ̄, in any equilibrium, the leader starts

by approaching member q + 1 and then approaches members in {1, ..., q − 1} in arbitrary

order; when she approaches member i, she offers ti = (1− δ)xi and it is accepted.

4 Up-front payments

We now turn to the model in which the leader offers an up-front payment in exchange for

a member’s vote. Note that under unanimity, since every member i has the right to veto,

he accepts an offer if and only if it compensates for his loss xi, appropriately discounted.

Specifically, in any state (S, r) such that |S| = r, if member i is approached in equilibrium,

he accepts the offer ti if and only if ti ≥ δrxi. (Since the policy passes after the leader buys

the votes of the remaining r members but the payment is up front, the member is willing

to accept any offer greater than δrxi.) It follows that the leader’s payoff is δr(y−
∑

i∈S xi)

by getting the policy pass, and therefore the policy passes in equilibrium if this payoff is

positive, that is, y >
∑

i∈S xi. Another special case is when r = 1. Since the leader needs

only one vote for the policy to pass, once the leader buys one member’s vote, she does

not approach any more members and initiates voting immediately. Whether the offer is

an up-front payment or a transfer promise does not matter for the incentives, implying

that the condition for the policy to pass in equilibrium is y > x1. In contrast, when the

leader needs more than one vote for the policy to pass, whether the offer she makes is

up-front payment or transfer promises has important implications, which we illustrate by

the following example.

Example 1. Suppose n = 3 and q = 2. We first show that when y > x1 + x2, then the

policy passes in equilibrium with offers close to 0 when the players are patient, similar to

what happens in transfer-promise game. We then show that if x2 < y < x1 + x2, then the

policy still passes in equilibrium in the up-front-payment game, even though it does not in

the transfer-promise game, but in this case, not all offers are close to 0. We finally show

that if y < x2, then the policy does not pass even in the up-front-payment game.
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First consider y > x1 + x2. If member 3 is approached first, then he is willing to

accept any offer greater than x3δ
2(1−δ) because even if he rejects the offer, the policy will

still pass in the continuation game and therefore his rejection only delays the passing of

the policy by one period. Hence, he accepts any offer t such that t − δ2x3 > δ3x3. After

member 3’s vote is bought, member 1 is willing to accept any offer greater than x1δ(1− δ)

because his rejection only delays the passing of the policy by one period. Note that both

offers are close to 0 for patient players – we refer to them as “exploitation” offers.12

Now consider x2 < y < x1 + x2. If member i is approached first, he is willing to

accept an offer if and only if ti ≥ δ2xi. To see this, note that if member i rejects the

offer, then the policy will fail to pass since the leader would need to buy each remaining

member’s vote, which is too costly given that y < x1 + x2. But after securing member 1’s

vote by offering him t1 = δ2x1 (we call this an “temptation” offer), now the leader can

buy member 3’s vote by making him an exploitation offer (1− δ)x3. Since the leader can

buy enough votes at a cost lower than y, the policy passes in equilibrium.

Finally consider y < x2. For the same reason as discussed above, the leader has to

make a temptation offer to the member approached first. Since y < x2, it is too costly

for the leader to tempt member 2 or 3. Furthermore, even if the leader buys member 1’s

vote first, whoever the leader approaches next would still accept only a temptation offer,

which would be too costly. Hence, the policy does not pass in equilibrium even in the

up-front-payment game.

4.1 When does the policy pass?

The next proposition says that given a state (S, r), if the players are sufficiently patient,

the policy passes if and only if y is above a threshold W (S, r), defined recursively as

follows. For any state (S, r), denote by maxS the member in S with the highest loss and

12This is the optimal sequence if y < x1 + x3; if y > x1 + x3, then it is optimal to approach member 2 first,
followed by member 1.
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let S′ = S \ {maxS} (∅′ = ∅ by convention). Let

W (S, r) = min
T∈2S

max

∑
j∈T

xj ,W ((S \ T )′, r − |T |)

 . (1)

Proposition 3. Suppose the leader offers up-front payments. Consider a subgame Γ(S, r).

For generic y, there exists δ̄ < 1 such that for δ > δ̄, in any equilibrium, the policy passes

if y > W (S, r) and the policy does not pass if y < W (S, r).

To understand why W (S, r) is the threshold that determines whether the policy passes

in equilibrium, it is useful to classify the members in terms of their bargaining positions

given a state.

Definition 2. A member i ∈ S in state (S, r) is

1. dispensable if y > W (S \ {i}, r),

2. indispensable if y ∈ (W (S \ {i}, r − 1),W (S \ {i}, r)).

The definition of dispensability and indispensability here parallel those in the model

of transfer promises. As implied by Proposition 3, a member is indispensable in a state

if the policy does not pass in equilibrium without the leader securing the member’s vote

in that state whereas a member is dispensable in a state if the policy still passes in

equilibrium even without the leader securing the member’s vote in that state. As before,

when a member is indispensable, he has a strong bargaining position and thus accepts

the leader’s offer if and only if it at least compensates for his loss (with the appropriate

discounting), but when a member is dispensable, he has a weak bargaining position and is

therefore willing to accept an offer that just compensates him for a sooner passage of the

policy. We referred to these two distinct kinds of offers as temptation and exploitation

offers, as formalized in the following definition.

Definition 3. Fix a profile of strategies and consider the resulting sequence of approached

members. Suppose member i is offered ti in state (S, r). We say that member i is tempted

if ti = δrxi and that member i is exploited if ti = δrxi(1 − δ). We say a profile is in a
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temptation phase when the approached member is tempted and is in an exploitation phase

when the approached member is exploited.

Lemma 1. Suppose the leader offers up-front payments. For generic y, there exists δ̄ < 1

such that for δ > δ̄, in any equilibrium, if member i is approached in a state in which he

is indispensable, then he is tempted, and if member i is approached in a state in which he

is dispensable, then he is exploited.

Lemma 2. Given a state (S, r), if there exists a member i ∈ S who is dispensable, then

(i) member maxS is dispensable in (S, r); (ii) any member in S \ {i} is dispensable in

state (S \ {i}, r − 1), which implies that starting in state (S, r), there exists a sequence of

r members along which each member is dispensable.

Since the payment made to a dispensable member goes to 0 as the discount factor

goes to 1 by Lemma 1, once an exploitation phase starts in equilibrium, it remains in that

phase until the leader buys all the votes she needs. Moreover, since the payment made to

an indispensable member equals his loss (in the limit as the discount factor goes to 1), the

total payment that the leader makes is the sum of the losses of the members approached

in the temptation phase. Hence, if there exists a set of members such that the following

two conditions hold: (i) the sum of their losses is below y, and (ii) after the leader buys

their votes, at least one remaining member is dispensable, then the policy will pass in

equilibrium. Conditions (i) and (ii) are reflected in the definition of W (S, r).

4.2 Equilibrium sequencing with up-front payments

To see which members are tempted in equilibrium, consider the following problem for any

state (S, r):

Π(S, r, y) = min
T∈2S

∑
j∈T

xj s.t. y > W ((S \ T )′, r − |T |). (2)

The constraint ensures that after the leader buys the votes of members in the set T ,

there exists one member in the remaining set who is dispensable. As discussed above, the

leader’s payments to members who are dispensable are close to 0 and therefore she is only
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concerned about her payments to members in T , which equals the sum of their losses.

Hence, the least costly way for her to buy enough votes to get the policy passed involves

tempting members in T that solves (2). It also follows that the payment that the leader

makes in equilibrium is close the value of the problem, that is, equals Π(S, r, y).

We summarize these characterizations of the equilibrium in Proposition 4 below.

Proposition 4. Suppose the leader offers up-front payments and y > W (N, q). For

generic y, there exists δ̄ < 1 such that for δ > δ̄ following results hold.

(a) In any equilibrium, the leader approaches q members and each accepts her offer.

(b) Any equilibrium consists of two phases (with one possibly empty), a temptation phase

followed by an exploitation phase.

(c) In any equilibrium, the set of members included in the temptation phase solves the

optimization problem (2).

(d) Let T be the members included in the temptation phase and E be the members included

in the exploitation phase. For any order of the members in which the members in T are

before the members in E and in which the first member in E is dispensable in (N \ T, r−

|T |), there exists an equilibrium in which the members are approached in that order.

(e) The leader’s equilibrium payoff is constant across equilibria and its limit is y−Π(N, q, y) >

0 as δ → 1.

When y > W (N, q) the policy passes in any equilibrium by Proposition 3, and Propo-

sition 4 shows that in any such equilibrium the leader approaches exactly q members with

offers that are accepted, that the approached members are first tempted and then ex-

ploited, that the set of tempted members solves (2), and that any equilibrium multiplicity

does not affect the leader’s payoff. Multiple equilibria may exist but affect only the mem-

bers’ payoffs. This reflect two main sources of equilibrium multiplicity. First, when two

members have identical loss, the leader might be indifferent as to which one to approach.

Second, the leader is indifferent between all possible orders within the temptation and the

exploitation phase, provided the latter starts with a dispensable member.

Propositions 3 and 4 provide characterization of all equilibria with up-front payments
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by linking properties of the equilibria to the W and Π functions. However, it is not

possible to derive closed-form expressions for these functions except in special cases.13

Proposition 5. Consider state (N, q) and suppose that y > W (N, q):

1. (one vote needed) W (N, q) = x1 and Π(N, q, y) = 0 if q = 1 and n ≥ 2,

2. (unanimity) W (N, q) =
∑

j∈N xj and Π(N, q, y) =
∑

j∈N xj if q = n,

3. (simple majority and less) W (N, q) = xq if q ≤ n+1
2 and Π(N, q, y) = 0 if q < n+1

2 ,

4. (homogeneous losses) W (N, q) = d q
n−q+1ex = b n

n−q+1cx and Π(N, q, y) = tx, where

t is the smallest non-negative integer such that y > d q−tn−q e, if xi = x for all i ∈ N ,

5. (i) W (N, q) depends only on the losses of members 1 through q, that is, W (N, q) =

W (N̂ , q) if |N | = |N̂ | and xi = x̂i for all i ∈ {1, . . . , q}, and (ii) the equilibrium

temptation phase includes at most q members and includes only members with q

lowest losses, that is, any T that solves (2) satisfies |T | ≤ q and i /∈ T if xi > xq,

and

6. W (N, q) ≤
∑q

i=1 xi and Π(N, q, y) = 0 if y >
∑q

i=1 xi and q < n.

The proposition shows that when the leader needs one vote for the policy to pass, the

policy passes in equilibrium depending on how y compares to x1 and passes at no cost

(in the limit). When the passage of the policy requires the votes of all members, the cost

of passing the policy is the sum of the members’ losses. For voting rules weakly below

simple majority, the policy passes when y > xq and passes at no cost (in the limit) for

voting rules strictly below simple majority. Parts 1 through 3 summarize these special

cases. Part 4 derives W and Π when members have homogeneous losses and implies that

both are non-increasing in n and non-decreasing in q. Part 5 applies generally and shows

that the condition for the policy passing depends only on the losses of the members with q

lowest losses. In addition, any equilibrium temptation phase includes at most q members

and excludes members with losses strictly above the loss of member q. Part 6 connects the

13For any state (S, r) with |S| − r = 1, problem (3) defining W is a special case of the Partition problem and
problem (2) defining Π is a special case of the Knapsack problem. Both of these problems are well known in
computer science and combinatorial optimization and both are NP-hard.
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up-front payment and the transfer promise models. Recall that with transfer promises,

the policy passes in any equilibrium when y exceeds
∑q

i=1 xi at no cost (in the limit).

With up-front payments, the policy passes not only when y >
∑q

i=1 xi, in which case it

passes at no cost (in the limit), but also when y ∈ (W (N, q),
∑q

i=1 xi).

4.3 Comparative statics

The following proposition shows how equilibrium outcomes vary with paramters.

Proposition 6. Consider state (N, q) and any y:

1. W (N, q) ≥W (N, q − 1) and Π(N, q, y) ≥ Π(N, q − 1, y) if q ≥ 2,

2. W (N, q) ≥ W (N̂ , q) and Π(N, q, y) ≥ Π(N̂ , q, y) if |N | ≤ |N̂ | and xi ≥ x̂i for all

i ∈ {1, . . . , n},

3. W (N, q) is independent of y and Π(N, q, y) ≥ Π(N, q, y′) if y′ > y.

4. W (N, q) ≥ W (N \ {i}, q − 1) and Π(N, q, y) ≥ Π(N \ {i}, q − 1, y) for any i ∈ N if

q ≥ 2,

The first three parts of the proposition show that the condition under which the policy

passes in equilibrium is less stringent and that the (limiting) cost of the policy passing

is lower either when the passage of the policy requires fewer votes (part 1), or when the

committee is larger or is composed of weakly opposed members (part 2), or when the

leader gains more from the policy (part 3). This implies that smaller committees and

fewer required votes have offsetting effects on the passage of the policy and the cost of

the passage. Nevertheless, the fourth part shows that the effect of the required votes

dominates. That is, decreasing the size of the committee benefits the leader if combined

with the same decrease in the number of votes required for the policy passing.

Proposition 6 shows that weakly-opposed members make it easier for the leader to

buy votes. The proposition, however, is silent on the effect of offsetting changes in the

members’ opposition. That is, keeping the total opposition
∑

i∈N xi constant at c, is

homogeneous or heterogeneous opposition more effective, in the sense of maximizing either
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W (N, q) or Π(N, q, y) or both? From Proposition 5 part 2, any profile (xi)i∈N yields the

same W (N, q) and Π(N, q, y) under unanimity. Otherwise, Proposition 5 part 6 shows

that profile (xi)i∈N with xi = ε for all i < n and xn = c − ε(n − 1), for small enough

ε > 0, yields W (N, q) arbitrarily close to zero and Π(N, q, y) = 0. That is, committees

composed of n− 1 weakly opposed members and one strongly opposed member represent

ineffective opposition. The next proposition shows which committees represent effective

opposition in the sense of maximizing W (N, q).

Proposition 7. Consider state (N, q) and suppose that q < n and
∑

i∈N xi = c. Then

W (N, q) ≤ c
n−q+1 . Moreover, if xi = ε for i ∈ {1, . . . , n − nb} and xi = c−ε(n−nb)

nb
for

i ∈ {n − nb + 1, . . . , n}, where nb = k(n − q + 1) for some k ∈ {1, . . . , b n
n−q+1c}, then∑

i∈N xi = c and there exists ε̄ > 0 such that, for all ε ∈ (0, ε̄), W (N, q) = c−ε(n−nb)
n−q+1 .

Proposition 7 implies that committees composed of nb equally strongly opposed mem-

bers, where nb is multiple of n− q+ 1, with the remaining members only weakly opposed,

represent effective opposition in the sense of bringing W (N, q) arbitrarily close to its upper

bound, while keeping the sum of the members’ losses constant. The profile constructed

in the proposition does not reach the bound because the losses are constrained to be

strictly positive. The proposition also implies that multiple profiles that bring W (N, q)

arbitrarily close to its upper bound may exist. For example, when n = 5 and q = 4,

then W (N, q) = c−3ε
2 under profile (ε, ε, ε, c−3ε2 , c−3ε2 ) and W (N, q) = c−ε

2 under profile

(ε, c−ε4 , c−ε4 , c−ε4 , c−ε4 ).

5 Extensions and discussions

In this section, we discuss several extensions of our main model. To start, it is useful to

consider a model in which the leader must make offers to all members simultaneously, a

benchmark that provides a contrast to our sequential vote-buying model.
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5.1 Simultaneous offers

Consider the following extensive-form game. In the first period, the leader either offers a

profile of transfer promises t = (t1, . . . , tn) ∈ R+
n , or stops, or initiates a vote. If the leader

stops or initiates a vote, then the game ends and the players receive their payoffs. If the

leader offers t, then the members sequentially, in some predetermined order, decide either

to accept or reject the leader’s offer and the game then proceeds to the second period in

which the leader chooses either to initiate a vote or to stop. The game then ends and

all players receive their payoffs. Let a = (a1, . . . , an) be the profile of members’ actions,

where for each i ∈ N , ai = 0 indicates rejection and ai = 1 indicates acceptance.

If the leader stops in any of the periods or initiates a vote in the first period, the

policy does not pass and all players receive zero payoff. If the leader initiates a vote in

the second period, the leader’s payoff is y−
∑

i∈N aiti and member i’s payoff is −xi + aiti

if
∑

i∈N ai ≥ q (the policy passes) and the leader’s payoff is −
∑

i∈N aiti and member i’s

payoff is aiti if
∑

i∈N ai < q (the policy does not pass) if
∑

i∈N ai < q.14 Players discount

payoffs by δ ∈ (0, 1] between periods.

We study pure strategy subgame perfect equilibria. We assume that member who is

indifferent between accepting and rejecting and is pivotal, that is, would change whether

the policy passes by changing her action, accepts. Below we call a pure strategy subgame

perfect equilibrium with this acceptance rule simply an equilibrium.

Proposition 8. Consider the simultaneous vote-buying game with transfer promises. If∑q
i=1 xi > y, then the policy does not pass in any equilibrium. If

∑q
i=1 xi < y, then in any

equilibrium, (a) the policy passes, (b) q members are offered strictly positive transfers, (c)

if member i is offered a strictly positive transfer, then ti = xi and (d)
∑

i∈N ti =
∑q

i=1 xi.

As can be seen from Proposition 8, the condition for the policy passing in equilibrium

is the same whether the leader make transfer promises simultaneously or sequentially: it

depends on how her gain from the policy compares with the sum of the lowest q losses of

14Notice that the payoff of a member i who rejects is −xi and 0 when the policy passes and does not pass
respectively, and the payoff of a member i who accepts is −xi + ti and is in {0, ti} when the policy passes and
does not pass respectively.
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the members. Moreover, the set of members who receive positive transfers are (largely)

the same whether they are approached simultaneously or sequentially: it is the set of

members who are least opposed to the policy (with the caveat that under sequential

vote-buying, sometimes the q+1th member needs to be bought). However, the amount of

transfers they receive are drastically different: when approached sequentially, the members

receive exploitation offers (offers close to 0), whereas when approached simultaneously,

the members receive temptation offers (offers that compensate fully their losses). This

is because when the leader has to make simultaneous offers to all members, she can no

longer use other members as threat points. Without the divide-and-conquer mechanism

at her disposal when she could approach the members sequentially, she now has to buy q

votes by compensating the members fully for their losses.

Analogous results hold if the offers are up-front payments instead of transfer promises.

The condition for the policy passing and the set of members who receive strictly positive

transfers in equilibrium are identical. The only difference is that the temptation offers

with up-front payments are δxi instead of xi. This is because the periods in which the

transfers are received and the policy passes are different.15

We have analyzed an extensive form in which the members make acceptance/rejection

decisions sequentially even though the offers are made simultaneously. One important

reason for our choice of analyzing this extensive form instead of an alternative one in

which the acceptance/rejection decisions are made simultaneously is the issue of multiple

equilibria, which we discuss below. Consider the extensive form in which the leader makes

simultaneous offers t ∈ R+
n and the members then simultaneously decide whether to accept

or reject the offers. Note that if the leader makes an arbitrarily small positive offer ε > 0

to q + 1 members, then it is an equilibrium for each member to accept the offer since

no one is pivotal – that is, given that all other members who have received offers are

going to accept, it is a strict best response to accept. This equilibrium relies on a kind

15When the offers are made simultaneously, the difference between sunk and non-sunk cost disappears and
hence the conditions for policy passing and the set of members who receive positive transfers in equilibrium
are identical. Details of the results for the case of up-front payment when the offers must be simultaneous are
available upon request.
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of mis-coordination on the part of the members; and since its existence is independent of

the preferences of the players, this can lead to highly inefficient outcomes. On the other

hand, it is also an equilibrium in which every member who has received an offer says

no. There are various ways to deal with this multiple-equilibria problem. In Genicot and

Ray [2006], for example, they impose a refinement to rule out members’ mis-coordination.

Instead of imposing a similar refinement, we analyze the extensive form in which the

members acceptance/rejection decisions are made sequentially, which in effect eliminates

their mis-coordination in equilibrium.

5.2 General timing: simultaneous offers allowed

In our main model of sequential vote buying, the leader makes one offer to one member

in each period. We now enrich our model such that in each period, the leader can make

simultaneous offers to a subset of members who have not been approached before, or

initiate a vote, or stop. If the leader makes simultaneous offers to a subset of members,

these members then sequentially decide, in some predetermined order, whether to accept or

reject the leader’s offers, and then the game proceeds to the next period. The assumptions

on payoffs are the same as before.

We analyze the case when the offers are transfer promises in what follows. At the end

of this subsection, we discuss what happens when the offers are up-front payments. As

before, a state is (S, r, t), where S is the set of members who have not been approached by

the leader, r is the number of votes still needed for the policy to pass and t is the sum of

the promised transfers to the members who have already been approached by the leader

and accepted the offers. If in the current period, X ⊆ S members are approached and

X̂ ⊆ X accept the offers, whose sum is t̂, then the state transitions to (S\X̂, r−|X̂|, t+ t̂).

We first show that when simultaneous offers are allowed, the condition for the policy

passing in equilibrium that we established in Proposition 1 remains the same.

Proposition 9. Suppose the leader offers transfer promises with simultaneous offers al-

lowed. Consider a subgame Γ(S, r, t) where r ≤ |S|. In any equilibrium, (a) if y − t >
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∑
j∈Sr xj, the policy passes, and (b) if y − t <

∑
j∈Sr xj, the policy does not pass.

To determine the optimal sequence in which the leader should approach the members

now that simultaneous offers are allowed, we adapt the notion of (in)dispensability of an

individual member defined before to joint (in)dispensability of a set of members.

Definition 4. In the transfer-promise game when simultaneous offers are allowed, con-

sider state (S, r, t) where r < |S|. (a) A subset of members M ⊆ S is jointly indispensable

in (S, r, t) if |S \M | < r or if
∑

j∈Sr xj < y− t <
∑

j∈(S\M)r xj. (b) A subset of members

M ⊆ S is jointly dispensable in (S, r, t) if |S \M | ≥ r and y − t >
∑

j∈(S\M)r xj.

Intuitively, a subset of members is jointly indispensable in a state if the policy does

not pass in equilibrium without the leader securing all the members’ votes in that state

whereas a subset of members is jointly dispensable in a state if the policy still passes in

equilibrium even without the leader securing all the members’ votes in that state.

A subset of members’ strategic position is stronger when it is indispensable than when

it is dispensable. When a subset is indispensable, each member i accepts the leader’s offer

only if it at least compensates for his loss xi since by rejecting the offer, the policy will fail

to pass. When a subset is dispensable, however, each member anticipates that the policy

still passes even if he rejects the offer.

Proposition 10. In the transfer-promise game with simultaneous offers allowed, if the q

lowest members are jointly dispensable at the beginning of the game, then in equilibrium

the leader approaches them in the first period, making each of them an offer of (1− δ)xi,

and these offers are accepted.

Proposition 10 highlights a significant difference between our paper and Genicot and

Ray [2006]. In Genicot and Ray [2006], the exploitation phase must proceed sequentially,

an implication of their assumptions on payoffs: specifically, that the agents’ reservation

payoffs are strictly increasing in the number of “free agents,” that is, agents who have

not accepted the principal’s offers. In our model, in contrast, the exploitation phase may

take place in just one shot, provided that the lowest q members are jointly dispensable,
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which happens if the leader’s gain from the policy is sufficiently high and the number of

votes needed is below majority. (The conditions are less stringent for simultaneous, not

necessarily one-shot, approaching of members to arise in our model.)

5.3 Bargaining with coalitions

Suppose there are m coalitions with different voting weights. Let ci be the number of

votes that coalition i has, so
∑m

i=1 ci = n. We also order the coalitions so that ci ≤ ci+1.

Assume that coalition i’s loss from the policy is xi > 0. (A special case is when the loss

is proportional to the size of the coalition, that is, xi = x · ci where x > 0. In this case,

without loss of generality, we normalize x = 1.)

Note that if ci > n − q, then coalition i has veto power and clearly the leader has to

pay it ci in order for the policy to pass. In what follows, we assume that cm ≤ n − q,

that is, no coalition has veto power. Let M = {1, ...,m}. In our previous analysis when

the leader bargains with individual members, S ⊆ N is a coalition of members; in this

section, S ⊆M is a coalition of coalitions.

For any S ⊆M , let S# denote the total number of votes of the coalitions in S, that is,

S# =
∑

i∈S ci. Let Smin and Smax be the smallest and largest coalitions in S, respectively.

Let K(M, q) be the collection of subsets of coalitions such that the total voting weights

of each subset of the coalitions is at least q and the total losses the coalitions in each subset

is the smallest, that is,

K(M, q) = arg min
K⊆M

∑
i∈K

xi

subject to
∑
i∈K

ci ≥ q.

We call K(M, q) ∈ K(M, q) a minimum-loss winning coalition: since the total number

of votes that the coalitions in K(M, q) have is at least q, it is “winning”; and among

all the winning coalition of coalitions, it has the lowest total loss from the policy. Let

X(M, q) be the value of the problem, that is, X(M, q) =
∑

i∈K(M,q) xi is the total loss
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of a minimum-loss winning coalition (MLWC for short). Note that if each coalition is an

individual member, then M = N and X(M, q) =
∑q

i=1 xi, the sum of the lowest q losses

of the members.

The following proposition generalizes the results we established for the transfer-promise

game when the leader bargains with individual voters: (i) whether the policy passes in

equilibrium depends on whether y is higher than the total loss of a MLWC, and (ii) when

the policy passes, the leader makes payment close to 0 when the players are patient.

Proposition 11. Suppose the leader makes transfer promises to coalitions. (a) If y >

X(M, q), then the policy passes in any equilibrium; if y < X(M, q), then the policy does

not pass in any equilibrium. (b) Moreover, when the policy passes in equilibrium, the

payment that the leader makes in equilibrium goes to 0 as δ goes to 1.

The intuition for why the comparison of the leader’s gain y and loss of the MLWC

X(M, q) determines whether the policy passes in equilibrium is similar to that for Propo-

sition 1. To prove part (b), we extend the definition of (in)dispensability to coalitions in

the transfer-promise game as follows. As before, let (S, r, t) denote a state, where the set

of un-approached coalitions is S, the leader still needs r votes in order for the policy to

pass and the leader has already promised to pay a total of t to the coalitions who have

accepted the offers.

Definition 5. In the transfer-promise game, consider state (S, r, t) where r < |S|. (a)

Coalition i ∈ S is indispensable in (S, r, t) if X(S, r) < y− t < X(S \{i}, r). (b) Coalition

i ∈ S is dispensable in (S, r, t) if y − t > X(S \ {i}, r).

For the same reason as discussed in section 3.2, if coalition i is approached in a state in

which it is dispensable, then it is willing to accept any offer greater than (1− δ)xi, which

goes to 0 as δ goes to 1. To establish part (b), we show that there exists a sequence of

coalitions along which each coalition is dispensable when the leader approaches it and the

sum of the weights of the coalitions is higher than q. Specifically, pick a MLWC K(M, q).

We first show that any coalition in M \ K(M, q) is dispensable at the beginning of the

game and therefore remains dispensable as the leader approaches the coalitions in this
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set. We then show that after the leader secures the votes of coalitions in M \K(M, q) at

transfer promises close to 0, now coalitions in K(M, q) become dispensable and therefore

the leader can secure their votes at cost close to 0 as well.

We characterized the optimal sequence when the leader bargains with individual mem-

bers in section 3.2. It is difficult to provide a general characterization when the leader

bargains with coalitions with arbitrary voting weights and losses from policy. To illus-

trate, consider the special case in which a coalition’s loss is proportional to its size, that

is, xi = ci. Note that in this case, X(M, q) = K#(M, q). As a first step, we look for condi-

tions under which the leader pays (1− δ)K#(M, q) under the optimal sequence. Consider

the following example.

Example 2. Suppose there are four coalitions, having weights 2, 2, 6, 7. Also suppose that

q = 8 and y = 8.5. So K(M, q) = {2, 6} and K#(M, q) = 8 < y. An optimal sequence is

for the leader to approach a coalition with weight 2 first and then approach the coalition

with weight 6. Note that since the coalition being approached is dispensable at that state,

the leader only pays (1− δ)ci.

Now suppose everything is the same as before except that the four coalitions have

weights 2, 2, 6, 9. We still have K(M, q) = {2, 6} and K#(M, q) = 8 < y, but it is no

longer an optimal sequence is for the leader to approach a coalition with weight 2 first and

then approach the coalition with weight 6. To see this, note that although a coalition with

weight 2 is dispensable at the beginning of the game; after it is bought, the coalition with

weight 6 is not dispensable and therefore the leader has to pay 6 in order to has its votes.

The optimal sequence in this case is for the leader to approach coalition with 9 votes first

and pays (1− δ)9.

One sufficient condition for the leader to pay (1 − δ)K#(M, q) under the optimal

sequence is as follows. If there exists K(M, q) ∈ K(M, q) such that Kmax(M, q) is dis-

pensable at the beginning of the game, then an optimal sequence is for the leader to

approach coalitions in K(M, q) is descending order. But as the example above shows, this

is not a necessary condition.
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6 Appendix

6.1 Proof of Proposition 1

Fix state (S, r, t). We first prove part (a). Assume y − t >
∑

j∈Sr xj . Suppose, towards
a contradiction, that there exists an equilibrium in Γ(S, r, t) in which the policy does not
pass. The leader’s payoff in this equilibrium is 0. We next show that the leader has a
strictly profitable deviation. Note that it is optimal for any member i to accept an offer
greater than xi. Consider the strategy of approaching members in S in a descending order,
starting with the member with the largest index in Sr first, offering zero transfer to the
first |S| − r members (no matter what the history is) and then offering xi + ε to each of
the remaining r member (no matter what the history is). Since the last r members accept
the offers, policy passes and the leader’s payoff is y − t −

∑
j∈Sr xj − rε > 0 for ε > 0

sufficiently low. Hence, the leader has a profitable deviation, a contradiction.
We next prove part (b) by induction. Assume y − t <

∑
j∈Sr xj . First consider

|S| = r. Suppose, towards a contradiction, that there exists an equilibrium in which
the policy passes. Since |S| = r, each member i ∈ S accepts the leader’s offer in this
equilibrium. Since any member i’s rejection leads to the failure of the policy passing, the
equilibrium payoff of any member i ∈ S is nonnegative. Hence, the leader must offer each
member i at least xi, which implies that the leader’s payoff in this equilibrium is no higher
than y− t−

∑
j∈S xj < 0. Since the leader receives a payoff of 0 if she stops immediately

in Γ(S, r, t), it follows that she has a strictly profitable deviation, a contradiction. Hence,
the policy doe not pass in any equilibrium.

Next, suppose that part (b) holds for |S| − r ≤ k where 0 ≤ k < |S|. We prove that
it also holds for |S| − r = k + 1. Suppose, towards a contradiction, that there exists
an equilibrium in Γ(S, r, t) in which the policy passes. Suppose in this equilibrium, the
leader approaches member i in the first period of Γ(S, r, t). Note that given the induction
hypothesis, if member i rejects the leader’s offer, then the policy does not pass in any
equilibrium in the resulting subgame Γ(S−i, r, t) since y − t <

∑
j∈Sr

−i
xj . Given that the

policy passes in equilibrium in Γ(S, r, t), the transfer ti offered to i has to be such that
δr(−xi + ti) ≥ 0, that is, ti ≥ xi. Note that in the subgame that follows member i’s
acceptance, Γ(Si, r − 1, t + ti), we have y − t − ti ≤ y − t − xi. Since y − t <

∑
j∈Sr xj ,

it follows that y − t − xi <
∑

j∈Sr−1
−i

xj and therefore y − t − ti <
∑

j∈Sr−1
−i

xj . By the

induction hypothesis, the policy does not pass in any equilibrium in Γ(S−i, r − 1, t + ti),
a contradiction. Hence, part (b) holds. �

6.2 Proof of Proposition 2

Given a set of members S, let (i)S be the member with the ith lowest loss among members
in S, that is, x(i)S ≤ x(i+1)S . We prove the following lemma. Also, let Sr denote the set
of members in S with the r lowest losses.

Lemma 3. In the transfer-promise game, consider subgame Γ(S, r, t) with r < |S| and
y − t >

∑
j∈Sr xj. There exists δ̄ < 1 such that for δ > δ̄, the following results hold

generically:
(a) In any equilibrium, only r members are approached and each accepts the leader’s offer.
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(b) Suppose the leader offer ti to member i ∈ S in state (S, r, t). If member i is indis-
pensable, then his equilibrium strategy is to accept ti if and only if ti ≥ xi; if member i is
dispensable, then his equilibrium strategy is to accept ti if and only if ti ≥ (1− δ)xi.
(c) If y− t >

∑r−1
j=1 x(j)S +x(r+1)S , then (i) there exists an equilibrium in which the leader

approaches i ∈ Sr in descending order; (ii) in any equilibrium, the leader approaches
member i ∈ Sr and offers ti = (1− δ)xi .
(d) If y− t <

∑r−1
j=1 xj(S) +x(r+1)S , then (i) there exists an equilibrium in which the leader

first approaches member (r + 1)S and then approaches i ∈ Sr−1 in descending order; (ii)
in any equilibrium, the leader first approaches member (r + 1)S and offer (1 − δ)x(r+1)S

and then approaches member i ∈ Sr−1 and offers ti = (1− δ)xi.

We prove the lemma by induction.
First step: we show that the results hold for |S| = 2, r = 1 and any t. Suppose the

leader offer ti to member i ∈ S. If i is dispensable, then his payoff equals ti − xi by
accepting the offer and his payoff equals −δxi by rejecting the offer since by Proposition
1 the policy passes in the subgame following the rejection. Hence, he accepts the offer if
and only if ti − xi ≥ −δxi, that is, ti ≥ (1 − δ)xi. If i is indispensable, then his payoff
equals ti− xi by accepting the offer and his payoff equals 0 by rejecting the offer since by
Proposition 1 the policy does not passe in the subgame following the rejection. Hence, he
accepts the offer if and only if ti ≥ xi. So part (b) holds.

Now we turn to part (c). Suppose y − t > x(2)S , which implies that member (1)S is
dispensable in state (S, r, t). By part (b), he accepts τ if and only if τ ≥ (1 − δ)x(1)S .
Since (1− δ)x(1)S is the lowest payment the leader has to make for the policy to pass, it
follows that in the unique equilibrium, the leader offers τ = (1− δ)x(1)S to member (1)S ,
which is accepted and the policy passes.

Now we turn to part (d). Suppose y − t < x(2)S , which implies that member (1)S is
indispensable in state (S, r, t). By part (b), he accepts τ if and only if τ ≥ x(1)S . But
since y− t > x(1)S , member (2)S is dispensable in state (S, r, t) and therefore accepts τ if
and only if τ ≥ (1− δ)x(2)S . For δ sufficiently high, we have (1− δ)x(2)S < x(1)S . Hence,
(1− δ)x(2)S is the lowest payment the leader has to make for the policy to pass, it follows
that in the unique equilibrium, the leader offers τ = (1 − δ)x(2)S to member (2)S , which
is accepted and the policy passes. Note that no matter y− t > x(2)S or y− t < x(2)S , only
one member is approached and he accepts the leader’s offer. Hence part (a) holds.

Second step: we show that for any r < |S| and any t, if the results hold for |S| ≤ k,
then they hold for |S| = k + 1. Suppose the leader offer ti to member i ∈ S. If i is
dispensable, then his payoff equals (ti − xi)δ

r−1 by accepting the offer and his payoff
equals −δrxi by rejecting the offer since by Proposition 1 and the induction hypothesis
the policy passes in the subgame following the rejection in r periods. Hence, he accepts
the offer if and only if (ti − xi)δr−1 ≥ −δrxi, that is, ti ≥ (1− δ)xi. If i is indispensable,
then his payoff equals ti − xi by accepting the offer and his payoff equals 0 by rejecting
the offer since by Proposition 1 the policy does not passe in the subgame following the
rejection. Hence, he accepts the offer if and only if ti ≥ xi. So part (b) holds.

We next turn to part (c). Suppose y − t >
∑r−1

j=1 x(j)S + x(r+1)S , which implies that
member (r)S is dispensable in state (S, r, t). By part (b), he accepts τ if and only if
τ ≥ (1− δ)x(r)S . Note that if δ sufficiently high, then in state (S−r, t+ (1− δ)x(r)S , r−1),
that is, the state after the leader secures the vote of member (r)S by making the transfer
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promise (1 − δ)x(r)S , member (r − 1)S−r is dispensable. By the induction hypothesis,
in state (S−r, t + (1 − δ)x(r)S , r − 1), there exists an equilibrium in which the leader
approaches i ∈ Sr−1 in descending order, offering each (1 − δ)xi and the policy passes.
Since (1− δ)

∑r
j=1 x(j)S is the lowest total offer that the leader has to make for the policy

to pass, it follows that it is an equilibrium for the leader to approach member (r)S in
state (S, r, t) and then approach the members in S−r in descending order, and in any
equilibrium, the leader approaches member i ∈ Sr and offers ti = (1 − δ)xi. So part (c)
holds.

Now we turn to part (d). Suppose y − t <
∑r−1

j=1 xj(S) + x(r+1)S , which implies that
member (r)S is indispensable in state (S, r, t). By part (b), he accepts τ if and only if
τ ≥ x(r)S . But since y − t >

∑
j∈Sr xj , member (r + 1)S is dispensable in state (S, r, t)

and therefore accepts τ if and only if τ ≥ (1− δ)x(r+1)S . Note that if δ sufficiently high,
then in state (S \ {r + 1)S}, t + (1 − δ)x(r+1)S , r − 1), that is, the state after the leader
secures the vote of member (r+1)S by making the offer (1−δ)x(r+1)S , member (r−1)S is
dispensable. By the induction hypothesis, in state (S \{r+ 1)S}, t+ (1− δ)x(r+1)S , r−1),
there exists an equilibrium in which the leader approaches i ∈ Sr−1 in descending order,
offering each (1 − δ)xi, and the policy passes. Note that for δ sufficiently high, we have
(1 − δ)x(r+1)S < x(r)S . It follows that (1 − δ)[x(r+1)S +

∑r−1
j=1 x(j)S ] is the lowest total

offer the leader has to make for the policy to pass. Hence, it is an equilibrium for the
leader to approach member (r + 1)S in state (S, r, t) and then approach the members in
S \ {r + 1)S} in descending order, and in any equilibrium, the leader first approaches
member (r + 1)S and then approaches member i ∈ Sr−1 and offers ti = (1 − δ)xi. Note
that no matter y − t >

∑r−1
j=1 x(j)S + x(r+1)S or y − t <

∑r−1
j=1 x(j)S + x(r+1)S , only r

members are approached and he accepts the leader’s offer. Hence part (a) holds. �

6.3 Proof of all results in Section 4

The results in Section 4 follow from Lemmas 4, 5, 6, 7 and 8 and from Proposition 12.
Throughout, let DW = {(S, r) ∈ 2N×Z|r ≤ n}, let DG = {(S, r) ∈ 2N×Z|S 6= ∅∧1 ≤

r ≤ |S|}, for any S ∈ 2N \∅, let S′ = S \ {maxS}, with the convention that ∅′ = ∅, and
let L = {

∑
j∈S xj |S ∈ 2N} ∪ {∞}. For any S ∈ 2N \ ∅, for any k ∈ {1, . . . , |S|}, let (k)

be the member with the k-th smallest index in S.16 That is, S = {(k)|k ∈ {1, . . . , |S|}}
and the set of xis of the members in S is {x(k)|k ∈ {1, . . . , |S|}}. Because xi ≤ xi+1

∀i ∈ N \ {n}, we have, ∀S ∈ 2N \ ∅ and ∀k ∈ {1, . . . , |S| − 1}, x(k) ≤ x(k+1). Use (k)S
instead of (k) only when the underlying S needs to be made explicit.

Let δ̄ = max{δ̄a, δ̄b, δ̄c}, where

(a) δ̄a ensures that, for any x ∈ L such that y − x > 0, y − x− nxn(1− δ) > 0, that is

δ̄a = 1− minx∈L,x<y(y−x)
nxn

,

(b) δ̄b ensures that nxn(1− δ) ≤ x1, that is, δ̄b = 1− x1
nxn

, and

(c) δ̄c ensures that, for any x, x′ ∈ L with x′ < x, x′ + nxn(1 − δ) ≤ x, that is,

δ̄c = 1− minx,x′∈L,x′<x(x−x′)
nxn

.

16Formally, given S ∈ 2N \ ∅ and k ∈ {1, . . . , |S|}, (k) is defined recursively as (k) = minS if k = 1 and
(k) = min{S \ ∪k−1

i=1 (i)} if k ≥ 2.
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Note that because minx∈L,x<y(y− x) > 0, x1 > 0 and minx,x′∈L,x′<x(x− x′) > 0, we have
δ̄ < 1.

Define W : DW → R ∪ {∞} as follows. W (S, r) = 0 for any (S, r) ∈ DW \ DG with
r ≤ 0, W (S, r) =∞ for any (S, r) ∈ DW \ DG with r > |S|, and, for any (S, r) ∈ DG,

W (S, r) = min
T∈2S

max

∑
j∈T

xj ,W ((S \ T )′, r − |T |)

 . (3)

Define Π : DG × R++ → R as follows

Π(S, r, y) = min
T∈2S

∑
j∈T

xj s.t. y > W ((S \ T )′, r − |T |). (4)

Definition 6. A member i ∈ S in state (S, r) ∈ DW is

1. dispensable if y > W (S \ {i}, r),
2. indispensable if y ∈ (W (S \ {i}, r − 1),W (S \ {i}, r)),
3. inconsequential if y < W (S \ {i}, r − 1).

Definition 7. Fix a profile of strategies and consider the resulting sequence of approached
members. We say a member approached in a state in which he is indispensable is tempted
and a member approached in a state in which he is dispensable is exploited. Suppose
any member is tempted before any member is exploited or vice versa. Then the tempted
members form a temptation phase and the exploited members form an exploitation phase.

Lemma 4. Consider state (S, r) ∈ DW .

1. If (S, r) ∈ DG, then any T that solves (3) satisfies |T | ≤ r.
2. If |S| ≥ 1, then W (S, 1) = x(1) and W (S, |S|) =

∑
j∈S xj.

3. W (S, r) ∈ L. If (S, r) ∈ DG, then W (S, r) ∈ (0,∞).

4. W (S, r) ≥W (S, r − 1).

5. W (Ŝ, r) ≤ W (S, r) for any Ŝ ∈ 2N such that |Ŝ| ≥ |S| and x̂(i)Ŝ ≤ x(i)S ∀i ∈
{1, . . . , |S|}.

6. If |S| ≥ 1, then W (S, r) ≥W (S \ {i}, r − 1) ∀i ∈ S.

7. If (S, r) ∈ DG, then W (S, r) = W (Ŝ, r) for any Ŝ ∈ 2N such that |Ŝ| = |S| and
x̂(i)Ŝ = x(i)S ∀i ∈ {1, . . . , r}.

8. If (S, r) ∈ DG, then W (S, r) ≤
∑r

j=1 x(j).

9. If (S, r) ∈ DG and r ≤ |S|+1
2 , then W (S, r) = x(r).

10. If (S, r) ∈ DG and xi = x ∀i ∈ S, then W (S, r) =
⌈

r
|S|−r+1

⌉
x =

⌊
|S|

|S|−r+1

⌋
x.

Proof. Part 1: Consider (S, r) ∈ DG and T that solves (3) given (S, r). Suppose, towards
a contradiction, |T | > r. Because r − |T | < 0, we have W ((S \ T )′, r − |T |) = 0 and
hence W (S, r) =

∑
j∈T xj . Now consider T ′. We have |T ′| = |T | − 1 because |T | > r and

31



(S, r) ∈ DG jointly imply T 6= ∅. Thus |T ′| ≥ r. Hence
∑

j∈T ′ xj <
∑

j∈T xj = W (S, r)
and W ((S \ T ′)′, r − |T ′|) = 0, a contradiction because T solves (3) given (S, r).

Part 2: It suffices to prove that, for any S ∈ 2N \∅, W (S, 1) = x(1) and W (S, |S|) =∑
j∈S xj . To see the latter, consider S ∈ 2N \ ∅. Because S ∈ 2N \ ∅, (S, |S|) ∈ DG.

The claim thus follows because the objective function in (3) evaluated at (S, |S|) and
T = S equals

∑
j∈S xj and evaluated at (S, |S|) and any T ∈ 2S \ S equals ∞. We

prove the former by induction on |S|. Note that for any S ∈ 2N \ ∅, (S, 1) ∈ DG. That
W (S, 1) = x(1) for any S ∈ 2N \∅ with |S| = 1 follows because W (S, |S|) =

∑
j∈S xj for

any S ∈ 2N \∅ with |S| ≥ 1. Now suppose that W (S, 1) = x(1) for any S ∈ 2N \∅ with

|S| ≤ k, where k ≥ 1. We need to prove that W (S, 1) = x(1) for any S ∈ 2N \ ∅ with
|S| = k + 1. To see this, consider T that solves (3) given (S, r). By Part 1, |T | ∈ {0, 1}.
If |T | = 0, then W (S, 1) = W (S′, 1) = x(1), where the second equality follows from the

induction hypothesis. If |T | = 1, then, because W ((S \ U)′, 1 − |U |) = 0 for any U ∈ 2S

with |U | = 1, we have T = {minS} as well as W (S, 1) =
∑

j∈T xj .

Part 3: We first prove that W (S, r) ∈ L for any (S, r) ∈ DW . We proceed by induction
on |S|. That W (S, r) ∈ L for any (S, r) ∈ DW with |S| = 0 follows directly from definition
of W . Now suppose that W (S, r) ∈ L for any (S, r) ∈ DW with |S| ≤ k, where k ≥ 0.
We need to prove that W (S, r) ∈ L for any (S, r) ∈ DW with |S| = k + 1. To see
this, we have either (i) r ≤ 0, in which case W (S, r) = 0 ∈ L, or (ii) r > |S|, in
which case W (S, r) = ∞ ∈ L, or (iii) r ∈ {1, . . . , |S|}, in which case, given T that
solves (3) given (S, r), either W (S, r) =

∑
j∈T xj ∈ L, or, by the induction hypothesis,

W (S, r) = W ((S \T )′, r−|T |) ∈ L. We now prove that W (S, r) <∞ for any (S, r) ∈ DG.
This follows because the objective function in (3) evaluated at (S, r) ∈ DG and T = S
equals

∑
j∈T xj < ∞. We now prove that W (S, r) > 0 for any (S, r) ∈ DG. We proceed

by induction on |S|. That W (S, r) > 0 for any (S, r) ∈ DG with |S| = 1 follows because
(S, r) ∈ DG and |S| = 1 imply r = 1 and hence, by Part 2, W (S, r) = x(1) > 0 for any

(S, r) ∈ DG with |S| = 1. Now suppose that W (S, r) > 0 for any (S, r) ∈ DG with |S| ≤ k,
where k ≥ 1. We need to prove that W (S, r) > 0 for any (S, r) ∈ DG with |S| = k+ 1. To
see this, consider T that solves (3) given (S, r). We have either (i) T = ∅, in which case
W (S, r) = W (S′, r) > 0 either by the induction hypothesis when (S′, r) ∈ DG or directly
from definition of W when (S′, r) /∈ DG and hence r > |S′|, or (ii) T 6= ∅, in which case
W (S, r) ≥

∑
j∈T xj > 0.

Part 4: We proceed by induction on |S|. That W (S, r) ≥W (S, r − 1) for any (S, r) ∈
DW with |S| = 0 follows directly from definition of W . Now suppose that W (S, r) ≥
W (S, r − 1) for any (S, r) ∈ DW with |S| ≤ k, where k ≥ 0. We need to prove that
W (S, r) ≥ W (S, r − 1) for any (S, r) ∈ DW with |S| = k + 1. To see this, we have either
(i) r ≤ 1, in which case W (S, r) ≥ minL = 0 by Part 3 and W (S, r − 1) = 0, or (ii)
r > |S|, in which case W (S, r) = ∞ ≥ W (S, r − 1), or (iii) r ∈ {2, . . . , |S|}, in which
case, given T that solves (3) given (S, r), W (S, r) = max{

∑
j∈T xj ,W ((S \T )′, r−|T |)} ≥

max{
∑

j∈T xj ,W ((S \ T )′, r − 1− |T |)} ≥ W (S, r − 1), where the first inequality follows
from the induction hypothesis.

Part 5: We proceed by induction on |S|. That W (Ŝ, r) ≤W (S, r) for any (S, r) ∈ DW
with |S| = 0 and for any Ŝ ∈ 2N such that |Ŝ| ≥ |S| and x̂(i)Ŝ ≤ x(i)S ∀i ∈ {1, . . . , |S|}
follows because given S = ∅ and any Ŝ ∈ 2N we have either (i) r ≤ 0, in which case
W (S, r) = W (Ŝ, r) = 0, or (ii) r ≥ 1, in which case W (S, r) = ∞ ≥ W (Ŝ, r). Now
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suppose that W (Ŝ, r) ≤ W (S, r) for any (S, r) ∈ DW with |S| ≤ k, where k ≥ 0, and for
any Ŝ ∈ 2N such that |Ŝ| ≥ |S| and x̂(i)Ŝ ≤ x(i)S ∀i ∈ {1, . . . , |S|}. We need to prove

that W (Ŝ, r) ≤ W (S, r) for any (S, r) ∈ DW with |S| = k + 1 and for any Ŝ ∈ 2N such
that |Ŝ| ≥ |S| and x̂(i)Ŝ ≤ x(i)S ∀i ∈ {1, . . . , |S|}. To see this, we have either (i) r ≤ 0,

in which case W (S, r) = W (Ŝ, r) = 0, or (ii) r > |S|, in which case W (S, r) = ∞ ≥
W (Ŝ, r), or (iii) r ∈ {1, . . . , |S|}, in which case, given T that solves (3) given (S, r) and
T̂ = {(k)Ŝ |k ∈ {1, . . . , |S|}, (k)S ∈ T}, W (Ŝ, r) ≤ max{

∑
j∈T̂ x̂j ,W ((Ŝ \ T̂ )′, r − T̂ )} ≤

max{
∑

j∈T xj ,W ((S \ T )′, r − |T |)} = W (S, r), where the second inequality follows from

the construction of T̂ and from the induction hypothesis.
Part 6: Let S∗ = S \ {minS} for any S ∈ 2N \ ∅. Note that for any S ∈ 2N with

|S| ≥ 2, (S∗)′ = (S′)∗. By Part 5, it suffices to prove that W (S, r) ≥ W (S∗, r − 1) for
any (S, r) ∈ DW with |S| ≥ 1, which we prove by induction on |S|. That W (S, r) ≥
W (S∗, r − 1) for any (S, r) ∈ DW with |S| = 1 follows either directly from definition of
W when (S, r) 6∈ DG or from W (S, r) = x(1) > 0 shown in Part 2 and W (S∗, r − 1) = 0

when (S, r) ∈ DG. Now suppose that W (S, r) ≥ W (S∗, r − 1) for any (S, r) ∈ DW
with |S| ≤ k, where k ≥ 1. We need to prove that W (S, r) ≥ W (S∗, r − 1) for any
(S, r) ∈ DW with |S| = k + 1. To see this, we have either (i) r ≤ 1, in which case
W (S, r) ≥ minL = 0 by Part 3 and W (S∗, r − 1) = 0, or (ii) r > |S|, in which case
W (S, r) = W (S∗, r − 1) =∞, or (iii) r ∈ {2, . . . , |S|}, in which case, given T that solves
(3) given (S, r), either (a) minS ∈ T , in which case S \ T = S∗ \ T ∗ and T ∗ ∈ 2S

∗

and hence W (S, r) = max{
∑

j∈T xj ,W ((S \ T )′, r − |T |)} ≥ max{
∑

j∈T ∗ xj ,W ((S∗ \
T ∗)′, r − 1 − |T ∗|)} ≥ W (S∗, r − 1), or (b) minS /∈ T and |T | ≥ r − 1, in which case
W ((S∗ \ T )′, r − 1 − |T |) = 0 and T ∈ 2S

∗
and hence W (S, r) = max{

∑
j∈T xj ,W ((S \

T )′, r−|T |)} ≥
∑

j∈T xj = max{
∑

j∈T xj ,W ((S∗ \T )′, r−1−|T |)} ≥W (S∗, r−1), or (c)

minS /∈ T and |T | ≤ r− 2, in which case |T | ≤ |S|− 2, (S \T )∗ = S∗ \T and T ∈ 2S
∗

and
hence W (S, r) = max{

∑
j∈T xj ,W ((S\T )′, r−|T |)} ≥ max{

∑
j∈T xj ,W ((S\T )′)∗, r−1−

|T |)} = max{
∑

j∈T xj ,W ((S∗ \T )′, r−1−|T |)} ≥W (S∗, r−1), where the first inequality
follows from the induction hypothesis.

Part 7: We proceed by induction on |S|. That W (S, r) = W (Ŝ, r) for any (S, r) ∈ DG
with |S| = 1 and for any Ŝ ∈ 2N such that |Ŝ| = |S| and x̂(i)Ŝ = x(i)S ∀i ∈ {1, . . . , r}
follows because, as shown in Part 2, W (S, 1) = x(1)S for any S ∈ 2N \ ∅. Now suppose

that W (S, r) = W (Ŝ, r) for any (S, r) ∈ DG with |S| ≤ k, where k ≥ 1, and for any
Ŝ ∈ 2N such that |Ŝ| = |S| and x̂(i)Ŝ = x(i)S ∀i ∈ {1, . . . , r}. We need to prove that

W (S, r) = W (Ŝ, r) for any (S, r) ∈ DG with |S| = k + 1 and for any Ŝ ∈ 2N such
that |Ŝ| = |S| and x̂(i)Ŝ = x(i)S ∀i ∈ {1, . . . , r}. To see this, we have either (i) r = 1,

in which case W (S, r) = x(1)S = x̂(1)Ŝ = W (Ŝ, r) by Part 2, or (ii) r = |S|, in which

case W (S, r) =
∑

j∈S xj =
∑

j∈Ŝ x̂j = W (Ŝ, r) by Part 2, or (iii) r ∈ {2, . . . , |S| − 1},
in which case, given T that solves (3) given (S, r), either (a) |T | = 0, in which case
W (S, r) = W (S′, r) = W (Ŝ′, r) ≥ W (Ŝ, r), where the second equality follows from the
induction hypothesis, or (b) |T | = r, in which case T = {(k)S |k ∈ {1, . . . , r}} because
W ((S \ T )′, r − |T |) = 0 and thus W (S, r) =

∑r
j=1 x(j)S =

∑r
j=1 x̂(j)Ŝ ≥ W (Ŝ, r), or (c)

|T | ∈ {1, . . . , r − 1}, in which case, given T̂ = {(k)Ŝ |k ∈ {1, . . . , r}, (k)S ∈ T}, W (S, r) =

max{
∑

j∈T xj ,W ((S\T )′, r−|T |)} = max{
∑

j∈T̂ x̂j ,W ((Ŝ\T̂ )′, r−|T̂ |)} ≥W (Ŝ, r), where
the second equality follows because, as we show below, it is without loss of generality to
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assume that T ⊆ {(k)S |k ∈ {1, . . . , r}}, and hence we have
∑

j∈T xj =
∑

j∈T̂ x̂j as well as

((S \T )′, r−|T |) ∈ DG implied by |T | ∈ {1, . . . , r−1} and r ≤ |S|−1, |(S \T )′| = |(Ŝ \ T̂ )′|
and x(i)(S\T )′

= x̂(i)(Ŝ\T̂ )′
∀i ∈ {1, . . . , r − |T |} and thus, by the induction hypothesis,

W ((S \ T )′, r − |T |) = W ((Ŝ \ T̂ )′, r − |T̂ |). All three subcases of the (iii) case show that
W (S, r) ≥ W (Ŝ, r). Swapping S and Ŝ in the argument shows that W (Ŝ, r) ≥ W (S, r)
and hence that W (S, r) = W (Ŝ, r).

What remains is to show that if T solves (3) given (S, r) with |S| = k+1, where k ≥ 1,
and r ∈ {2, . . . , |S|−1} and if |T | ∈ {1, . . . , r−1}, then there exists another solution of (3),
Ta, such that Ta ⊆ {(k)S |k ∈ {1, . . . , r}} and |Ta| = |T |. To see this, let Tr = {(k)S |k ∈
{1, . . . , r}, (k)S ∈ T}, Tr+1 = {(k)S |k ∈ {r + 1, . . . , |S|}, (k)S ∈ T}, Ur = {(k)S |k ∈
{1, . . . , r}, (k)S ∈ S \ T} and Ur+1 = {(k)S |k ∈ {r + 1, . . . , |S|}, (k)S ∈ S \ T}. Note that
because T ∈ 2S , S = Tr∪Tr+1∪Ur∪Ur+1. If |Tr+1| = 0 the claim follows by setting Ta = T .
Hence, suppose that |Tr+1| ≥ 1. Because |T | = |Tr|+ |Tr+1| and |Tr|+ |Ur| = r, we have
|Ur| = r − |T |+ |Tr+1| and hence there exists a partition of Ur into Us and Um such that
|Us| = r−|T | ≥ 1, |Um| = |Tr+1| ≥ 1 and i < j for any i ∈ Us and j ∈ Um. Now construct
Ta = Tr ∪ Um. By construction Ta ⊆ {(k)S |k ∈ {1, . . . , r}} and |Ta| = |T |. Moreover, we
have max{

∑
j∈T xj ,W ((S \ T )′, r− |T |)} ≥ max{

∑
j∈Ta xj ,W ((S \ Ta)′, r− |Ta|)}, where

the inequality follows from
∑

j∈T xj ≥
∑

j∈Ta xj , which holds because T = Tr ∪ Tr+1,
Ta = Tr ∪Um and Um ⊂ Ur, and from W ((S \ T )′, r− |T |) = W ((S \ Ta)′, r− |Ta|), which
holds by the induction hypothesis because ((S \T )′, r−|T |) ∈ DG, S \T = Us∪Um∪Ur+1,
S \ Ta = Us ∪ Tr+1 ∪ Ur+1, |Um| = |Tr+1|, i < j for any i ∈ Us and j ∈ Um ∪ Ur+1 ∪ Tr+1

and |Us| = r − |T | = r − |Ta|.
Part 8: We proceed by induction on |S|. That W (S, r) ≤

∑r
j=1 x(j) for any (S, r) ∈ DG

with |S| = 1 follows because, as shown in Part 2, W (S, r) = x(1) for any (S, r) ∈ DG with

|S| = 1. Now suppose that W (S, r) ≤
∑r

j=1 x(j) for any (S, r) ∈ DG with |S| ≤ k, where

k ≥ 1. We need to prove that W (S, r) ≤
∑r

j=1 x(j) for any (S, r) ∈ DG with |S| = k + 1.
To see this, we have either (i) r = |S|, in which case W (S, r) =

∑
j∈S xj by Part 2, or (ii)

r < |S|, in which case W (S, r) ≤W (S′, r) ≤
∑r

j=1 x(j), where the inequality follows from
the induction hypothesis.

Part 9: We proceed by induction on r. That W (S, r) = x(r) for any (S, r) ∈ DG with

r ≤ |S|+1
2 and with r = 1 follows from Part 2. Now suppose that W (S, r) = x(r) for

any (S, r) ∈ DG with r ≤ |S|+1
2 and with r ≤ k, where k ≥ 1. We need to prove that

W (S, r) = x(r) for any (S, r) ∈ DG with r ≤ |S|+1
2 and with r = k+1. To see this, consider

(S, r) ∈ DG with r ≤ |S|+1
2 and with r = k+ 1. We claim that T = {minS} solves (3) and

thus W (S, r) = max{x(1),W ((S \ {minS})′, r − 1)} = max{x(1), x(r)} = x(r), where the
second equality follows from the induction hypothesis. To see that max{

∑
j∈T xj ,W ((S \

T )′, r − |T |)} ≥ x(r) for any T ∈ 2S , given T ∈ 2S we have either (i) |T | ≥ r, in which
case

∑
j∈T xj ≥ x(r), or (ii) |T | = 0, in which case, because r ≥ 2 implies |S| ≥ 3

and hence S′ \ {minS} = (S \ {minS})′, we have W ((S \ T )′, r − |T |) = W (S′, r) ≥
W (S′ \ {minS}, r − 1) = W ((S \ {minS})′, r − 1) = x(r), where the inequality follows
from Part 6, or (iii) |T | ∈ {1, . . . , r − 1}, in which case either (a) (k) ∈ T for some
k ∈ {r, . . . , |S|}, in which case

∑
j∈T xj ≥ x(r), or (b) (k) /∈ T ∀k ∈ {r, . . . , |S|}, in

which case W ((S \ T )′, r − |T |) = x(r), where the equality follows from the induction

hypothesis, which we can invoke because for any T ∈ 2S with |T | ∈ {1, . . . , r − 1},
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we have ((S \ T )′, r − |T |) ∈ DG and r − |T | ≤ |(S\T )′|+1
2 . The former follows from

|(S \ T )′| = |S| − 1− |T | ≥ (2r − 1)− 1− |T | ≥ r − |T | ≥ 1, where the second inequality

uses r = k+ 1 ≥ 2. The latter is equivalent to r+ 1−|T |
2 ≤ |S|+1

2 and follows from |T | ≥ 1.

Part 10: We first prove that for any (S, r) ∈ DG, we have
⌈

r
|S|−r+1

⌉
=
⌊

|S|
|S|−r+1

⌋
. To

see this, (S, r) ∈ DG implies |S| ≥ 1 and r ∈ {1, . . . , |S|}. Thus |S| − r + 1 ≥ 1 and

0 < r
|S|−r+1 ≤

|S|
|S|−r+1 . It thus suffices to prove that there exists unique m ∈ N such

that r
|S|−r+1 ≤ m ≤ |S|

|S|−r+1 . To see that m exists, if r
|S|−r+1 /∈ N, then for the smallest

integer larger than r
|S|−r+1 , m′, we have r+i

|S|−r+1 = m′, where i ∈ {1, . . . , |S| − r}. Thus
|S|

|S|−r+1 = |S|−r−i
|S|−r+1 +m′ ≥ m′. That m is unique follows from |S|

|S|−r+1 −
r

|S|−r+1 < 1.

We now prove that if (S, r) ∈ DG and xi = x ∀i ∈ S, then W (S, r) =
⌈

r
|S|−r+1

⌉
x =⌊

|S|
|S|−r+1

⌋
x. We proceed by induction on |S| − r. Suppose xi = x ∀i ∈ S. That

W (S, r) =
⌈

r
|S|−r+1

⌉
x =

⌊
|S|

|S|−r+1

⌋
x for any (S, r) ∈ DG with |S| − r = 0 follows

because, by Part 2, W (S, |S|) =
∑

j∈S xj for any S ∈ 2N \ ∅. Now suppose that

W (S, r) =
⌈

r
|S|−r+1

⌉
x =

⌊
|S|

|S|−r+1

⌋
x for any (S, r) ∈ DG with |S| − r ≤ k, where k ≥ 0.

We need to prove that W (S, r) =
⌈

r
|S|−r+1

⌉
x =

⌊
|S|

|S|−r+1

⌋
x for any (S, r) ∈ DG with

|S|−r = k+1. To see this, because xi = x ∀i ∈ S and by Part 1, (3) simplifies to W (S, r) =

mint∈{0,...,r}max{tx,W (∪|S|−t−1i=1 {i}, r − t)} = xmint∈{0,...,r}max{t, d r−t
|S|−re}, where the

second equality follows from the induction hypothesis when r − t ≥ 1 and directly from
definition of W when r−t = 0. It thus suffices to prove that mint∈{0,...,r}max{t, d r−t

|S|−re} =

d r
|S|−r+1e = b |S|

|S|−r+1c. The structure of the problem implies that mint∈{0,...,r}max{t, d r−t
|S|−re} =

t∗, where t∗ ∈ N is the largest solution to the problem. In order to derive t∗ we need to con-
sider two cases: either t = d r−t

|S|−re for some t ∈ {0, . . . , r} or t 6= d r−t
|S|−re ∀t ∈ {0, . . . , r}.

In the former case t∗ = d r−t∗|S|−re = r−t∗+i
|S|−r , where i ∈ {0, . . . , |S| − r − 1}, and thus

t∗ = r+i
|S|−r+1 = d r

|S|−r+1e, where the second equality follows from t∗ ∈ N and i ≤ |S|−r−1.

In the latter case t∗ = r−t∗
|S|−r + 1, and thus t∗ = |S|

|S|−r+1 = b |S|
|S|−r+1c. �

Lemma 5. Consider state (S, r) ∈ DG and y > 0.

1. (4) has a solution. |T | ≤ r for any T that solves (4).

2. If r = |S|, then T = S is the unique solution to (4).

3. If y > W (S, r), then y −Π(S, r, y) > 0.

4. If y > W (S′, r), then T = ∅ is the unique solution to (4).

5. If y < W (S′, r), then T 6= ∅ for any T that solves (4).

6. If r < |S| and y >
∑r

j=1 x(j), then T = ∅ is the unique solution to (4).

7. If r < |S|+1
2 and y > x(r), then T = ∅ is the unique solution to (4).

8. If x 6= y for any x, y ∈ {
∑

j∈T xj |T ∈ 2N}, then (4) has a unique solution.

9. If r < |S|, then ∀i ∈ {r+1, . . . , |S|}, if x(r) < x(i), then (i) /∈ T for any T that solves
(4).
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Proof. Fix (S, r) ∈ DG and y > 0 throughout. Part 1: (4) has a solution because 2S is a
finite set and any T ∈ 2S such that |T | = r is admissible in (4) becauseW ((S\T )′, r−|T |) =
0. To see that |T | ≤ r for any T that solves (4), consider T that solves (4) and suppose,
towards a contradiction, that |T | > r. When r = |S|, we have |T | > |S|, a contradiction
to T ∈ 2S . When r < |S|, consider any Ta ⊆ T such that |Ta| = r. Because |T | > r, such
Ta exists. We have Ta ∈ 2S ,

∑
j∈T xj >

∑
j∈Ta xj and W ((S \ Ta)′, r− |Ta|) = 0, which is

a contradiction because T solves (4).
Part 2: Because r = |S| we have, for any T ∈ 2S \ S, |(S \ T )′| = |S| − |T | − 1 =

r − |T | − 1 > r − |T | ≥ 1 and hence W ((S \ T )′, r − |T |) = ∞. For T = S, we have
W ((S \ T )′, r − |T |) = W (∅, 0) = 0 and hence S is the unique solution to (4).

Part 3: When r = |S|, we have W (S, r) =
∑

j∈S xj by Lemma 4 part 2 and Π(S, r, y) =∑
j∈S xj by Part 2. When r < |S|, consider T ∈ 2S that solves (3) given (S, r). Because

y > W (S, r) = max{
∑

j∈T xj ,W ((S \ T )′, r− |T |)}, we have y > W ((S \ T )′, r− |T |) and
y >

∑
j∈T xj . The former inequality implies Π(S, r, y) ≤

∑
j∈T xj and hence the latter

inequality implies y > Π(S, r, y).
Parts 4 and 5: T = ∅ solves (4) when y > W (S′, r) because W ((S \ T )′, r − |T |) =

W (S′, r) when T = ∅ and is the unique solution because
∑

j∈Ta xj > 0 for any Ta ∈ 2S \∅.
T 6= ∅ for any T that solves (4) when y < W (S′, r) because T = ∅ is not admissible in
(4) when y < W (S′, r).

Part 6: Suppose r < |S| and y >
∑r

j=1 x(j). Because r < |S|, we have r ≤ |S′| and

thus (S′, r) ∈ DG. Hence, by Lemma 4 part 8,
∑r

j=1 x(j) ≥ W (S′, r). Thus y > W (S′, r)
and hence, by Part 4, T = ∅ is the unique solution to (4).

Part 7: Suppose r < |S|+1
2 and y > x(r). Because r < |S|+1

2 , we have r ≤ |S|2 and thus,
by Lemma 4 part 9, W (S, r) = W (S′, r) = x(r). Thus y > W (S′, r) and hence, by Part 4,
T = ∅ is the unique solution to (4).

Part 8: Suppose, towards a contradiction, that Ta and Tb are two distinct solutions to
(4). Because x 6= y for any x, y ∈ {

∑
j∈T xj |T ∈ 2N}, Ta ∈ 2S , Tb ∈ 2S and S ⊆ N , we

have
∑

j∈Ta xj 6=
∑

j∈Tb xj , a contradiction.
Part 9: Suppose r < |S| and consider T that solves (4). Suppose, towards a contra-

diction, that for some i ∈ {r + 1, . . . , |S|} we have x(r) < x(i) and (i) ∈ T . Note that
|T | ≤ r from Part 1 and r < |S| imply S \ T 6= ∅. There are two cases to consider. In
each case we construct Ta ∈ 2S such that

∑
j∈T xj >

∑
j∈Ta xj and W ((S \T )′, r− |T |) =

W ((S \ Ta)′, r − |Ta|) establishing a contradiction to T solving (4).
Case 1: maxS \T ≤ (r). Because maxS \T ≤ (r), we have maxS \T ≤ (r) < (i) and

hence xmaxS\T ≤ x(r) < x(i). Let Ta = (T ∪ {maxS \ T}) \ {(i)} ∈ 2S . By construction,∑
j∈T xj >

∑
j∈Ta xj . Moreover, |T | = |Ta| and (S\Ta)′ = (((S\T )\{maxS\T})∪{(i)})′ =

(S \ T )′ and hence W ((S \ T )′, r − |T |) = W ((S \ Ta)′, r − |Ta|).
Case 2: maxS \ T > (r). When |T | = r, Ta = {(k)S |k ∈ {1, . . . , r}} has the desired

properties. When |T | ∈ {1, . . . , r − 1}, let Tr = {(k)S |k ∈ {1, . . . , r}, (k)S ∈ T} and
Ur = {(k)S |k ∈ {1, . . . , r}, (k)S ∈ S \ T}. By construction, |Tr| + |Ur| = r. Moreover,
because (i) ∈ T and i ≥ r + 1, |T | ≥ |Tr| + 1 and hence |Ur| = r − |Tr| ≥ r − |T | + 1.
Thus, there exists a partition of Ur into Us and Um such that |Us| = r − |T | ≥ 1,
|Um| ≥ 1 and xj ≤ xj′ for any j ∈ Us and j′ ∈ Um. Let Ta = (T ∪ {i′}) \ {(i)} for
some i′ ∈ Um. By construction, Ta ∈ 2S . Moreover, because x(i) > x(r) and (r) ≥ i′, we

have x(i) > x(r) ≥ xi′ and thus
∑

j∈T xj >
∑

j∈Ta xj . Finally, ((S \ T )′, r − |T |) ∈ DG,
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S \T = Us ∪Um ∪Z ∪{maxS \T}, S \Ta = Us ∪ (Um \ {i′})∪Z ∪{maxS \T, (i)}, j < j′

for any j ∈ Us and j′ ∈ Um ∪ Z ∪ {maxS \ T, (i)} and |Us| = r − |T | = r − |Ta| and thus,
by Lemma 4 part 7, W ((S \ T )′, r − |T |) = W ((S \ Ta)′, r − |Ta|). �

Lemma 6. Consider state (S, r) ∈ DG and y > 0.

1. Π(S, r, y) ≥ Π(S, r − 1, y) if r ≥ 2.

2. Π(S, r, y) ≥ Π(Ŝ, r, y) for any Ŝ ∈ 2N such that |Ŝ| ≥ |S| and x̂(i)Ŝ ≤ x(i)S ∀i ∈
{1, . . . , |S|}.

3. Π(S, r, y) ≥ Π(S \ {i}, r − 1, y) for any i ∈ S if r ≥ 2.

4. Π(S, r, y) ≥ Π(S, r, y′) if y′ > y.

Proof. Fix (S, r) ∈ DG and y > 0 throughout. Consider T that solves (4). We have
y > W ((S \ T )′, r − |T |). Part 1: From Lemma 4 part 4, we have W ((S \ T )′, r − |T |) ≥
W ((S \ T )′, r− 1− |T |) and hence y > W ((S \ T )′, r− 1− |T |). Because (S, r− 1) ∈ DG,
Π(S, r, y) ≥ Π(S, r − 1, y).

Part 2: Consider Ŝ ∈ 2N such that |Ŝ| ≥ |S| and x̂(i)Ŝ ≤ x(i)S ∀i ∈ {1, . . . , |S|}. Let

T̂ = {(k)Ŝ |k ∈ {1, . . . , |S|}, (k)S ∈ T} ∈ 2Ŝ . From Lemma 4 part 5, we have W ((S \
T )′, r− |T |) ≥W ((Ŝ \ T̂ )′, r− |T̂ |) and hence y > W ((Ŝ \ T̂ )′, r− |T̂ |). Moreover, because
x̂(i)Ŝ ≤ x(i)S ∀i ∈ {1, . . . , |S|}, we have

∑
j∈T xj ≥

∑
j∈T̂ x̂j . Because (Ŝ, r) ∈ DG,

Π(S, r, y) ≥ Π(Ŝ, r, y).
Part 3: Consider i ∈ S. We have either i ∈ T or i /∈ T . When i ∈ T , set Ta = T \{i} ∈

2S\{i}. We have |T | = |Ta| + 1 and S \ T = (S \ {i}) \ Ta. Thus W ((S \ T )′, r − |T |) =
W (((S \{i})\Ta)′, r−1−|Ta|) and hence y > W (((S \{i})\Ta)′, r−1−|Ta|). Moreover,∑

j∈T xj ≥
∑

j∈Ta xj . Because (S \ {i}, r − 1) ∈ DG, Π(S, r, y) ≥ Π(S \ {i}, r − 1, y).
When i /∈ T , we have either |S \ T | = 1 or |S \ T | ≥ 2. In the former case T ∪ {i} = S
so that (S \ T )′ = ((S \ {i}) \ T )′ = ∅ and Lemma 4 part 4 imply W ((S \ T )′, r − |T |) =
W (((S\{i})\T )′, r−1−|T |) and hence y > W (((S\{i})\T )′, r−1−|T |). In the latter case
either ((S \ {i}) \ T )′ = (S \ T )′ \ {max(S \ T )′} when i = maxS \ T or ((S \ {i}) \ T )′ =
(S \ T )′ \ {i} when i < maxS \ T and Lemma 4 part 6 imply W ((S \ T )′, r − |T |) ≥
W (((S \ {i}) \ T )′, r − 1− |T |) and hence y > W (((S \ {i}) \ T )′, r − 1− |T |). Moreover,
because i /∈ T , T ∈ 2S\{i}. Because (S \ {i}, r − 1) ∈ DG, Π(S, r, y) ≥ Π(S \ {i}, r − 1, y).

Part 4: We have y′ > W ((S \T )′, r−|T |) because y′ > y. Thus Π(S, r, y) ≥ Π(S, r, y′).
�

Lemma 7. If i ∈ S is dispensable at (S, r) ∈ DW , then any j ∈ S with j > i is dispensable
at (S, r). If i ∈ S is dispensable at (S, r) ∈ DW , then, ∀j ∈ S \ {i}, i is dispensable at
(S \ {j}, r − 1) and j is dispensable at (S \ {i}, r − 1).

Proof. To prove the first sentence, using Definition 6, it suffices to prove that, for any
i, j ∈ S with j > i, if y > W (S \ {i}, r), then y > W (S \ {j}, r), which holds because, by
Lemma 4 part 5, we haveW (S\{i}, r) ≥W (S\{j}, r). To prove the second sentence, using
Definition 6, it suffices to prove that, for any i, j ∈ S with j 6= i, if y > W (S \{i}, r), then
y > W (S \{i, j}, r−1), which holds because, by Lemma 4 part 6, we have W (S \{i}, r) ≥
W (S \ {i, j}, r − 1). �

Lemma 8. Consider state (S, r) ∈ DG.
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1. W (S, r) ≤
∑

j∈S xj
|S|−r+1 .

2. Suppose x(i) = a for i ∈ {1, . . . , na}, x(i) = b for i ∈ {na + 1, . . . , na + nb}, where
a, b > 0, na, nb ∈ {0, . . . , |S|}, na + nb = |S| and b > 2|S|a. Let Iin(x) = 1

if x ∈ Z or x ≤ 0 and Iin(x) = 0 otherwise. Then W (S, r) = bdnb−(|S|−r)
|S|−r+1 e +

a
(
d na−|S|
|S|−r+1e+ d r

|S|−r+1e
)
Iin
(
nb−(|S|−r)
|S|−r+1

)
.

Proof. Part 1: Consider (S, r) ∈ DG. We proceed by induction on |S|−r. That W (S, r) ≤∑
j∈S xj
|S|−r+1 for any (S, r) ∈ DG with |S| − r = 0 follows from Lemma 4 part 2. Now suppose

that W (S, r) ≤
∑

j∈S xj
|S|−r+1 for any (S, r) ∈ DG with |S| − r = k, where k ≥ 0. We need to

prove that W (S, r) ≤
∑

j∈S xj
|S|−r+1 for any (S, r) ∈ DG with |S|− r = k+ 1. Proof of this claim

uses the following lemma.

Lemma 9. Given n ≥ 2 and r ∈ {1, . . . , n − 1}, for any (x1, . . . , xn) ∈ Rn++ such that∑n
i=1 xi = c > 0 and xi ≤ xi+1 for any i ∈ {1, . . . , n − 1}, a partition of {1, . . . , n − 1}

into two subsets A and B exists such that
∑

i∈A xi ≤
1

n−r+1c and
∑

i∈B xi ≤
n−r
n−r+1c.

Proof. Fix n ≥ 2, r ∈ {1, . . . , n − 1}, x ∈ Rn++ such that
∑n

i=1 xi = c > 0 and xi ≤ xi+1

∀i ∈ {1, . . . , n − 1}. Let s be the largest integer such that
∑s

i=1 xi ≤
c

n−r+1 . Because
x1 ≤ c

n ≤
c

n−r+1 , s ≥ 1, and because
∑n

i=1 xi = c > c
n−r+1 , s ≤ n− 1. Let A = {1, . . . , s}

and B = {s+ 1, . . . , n− 1}. By construction
∑

i∈A xi ≤
1

n−r+1c. It thus suffices to prove

that
∑

i∈B xi ≤
n−r
n−r+1c. If B = ∅, this is immediate. If B 6= ∅, suppose, towards a

contradiction, that
∑

i∈B xi =
∑n−1

i=s+1 xi >
n−r
n−r+1c. Because B 6= ∅, we have s ≤ n − 2

and hence, by definition of s,
∑s+1

i=1 xi >
1

n−r+1c. Thus
∑s+1

i=1 xi +
∑n−1

i=s+1 xi = xs+1 +∑n−1
i=1 xi > c = xn +

∑n−1
i=1 xi and hence xs+1 > xn, which is a contradiction because

s+ 1 ≤ n− 1 < n implies xs+1 ≤ xn. �

Because (S, r) ∈ DG and |S| − r = k + 1 ≥ 1, we have |S| ≥ 2 and r ∈ {1, . . . , |S| −
1}. Therefore, by Lemma 9, there exists a partition of S′ into sets A and B such that∑

j∈A xj ≤
∑

j∈S xj
|S|−r+1 and

∑
j∈B xj ≤

(|S|−r)
∑

j∈S xj
|S|−r+1 . Because A ∈ 2S , (3) implies that

W (S, r) ≤ max{
∑

j∈A xj ,W ((S \A)′, r − |A|)}. By construction of A and B,
∑

j∈A xj ≤∑
j∈S xj
|S|−r+1 . Moreover, we have either (i) |A| ≥ r, in which case W ((S \ A)′, r − |A|) = 0, or

(ii) |A| ≤ r− 1, in which case ((S \A)′, r− |A|) ∈ DG and (S \A)′ = (B ∪{maxS})′ = B

and hence W ((S \ A)′, r − |A|) ≤
∑

j∈B xj
(|S|−|A|−1)−(r−|A|)+1 ≤

(|S|−r)
∑

j∈S xj
|S|−r+1

1
|S|−r =

(
∑

j∈S xj
|S|−r+1 ,

where the first inequality follows from the induction hypothesis.
Part 2: Let Dw = {(na, nb, r) ∈ N2

+ ×Z|na + nb − r ≥ 0} and for any (na, nb, r) ∈ Dw,

let w(na, nb, r) = bdnb−(na+nb−r)
na+nb−r+1 e + a

(
d −nb
na+nb−r+1e+ d r

na+nb−r+1e
)
Iin
(
nb−(na+nb−r)
na+nb−r+1

)
.

We have the following: (i) for any (na, nb, r) ∈ Dw with na + nb − r = 0, w(na, nb, r) =
bnb + ana, (ii) for any (na, nb, r) ∈ Dw with na = 0, because r

nb−r+1 ∈ Z implies that

d −nb
nb−r+1e = d− nb−r

nb−r+1 −
r

nb−r+1e = − r
nb−r+1 , w(na, nb, r) = bd r

nb−r+1e, (iii) for any

(na, nb, r) ∈ Dw with nb = 0, because d− na−r
na−r+1e = 0, w(na, nb, r) = ad r

na−r+1e, and

(iv) for any (na, nb, r) ∈ Dw with r ≤ 0, because r ≤ 0 implies that d− na−r
na+nb−r+1e =

d− nb
na+nb−r+1e = d− −r

na+nb−r+1e = 0, w(na, nb, r) = 0.

38



Suppose that x(i) = a for i ∈ {1, . . . , na}, x(i) = b for i ∈ {na + 1, . . . , na + nb}, where
a, b > 0, na, nb ∈ {0, . . . , |S|}, na + nb = |S| and b > 2|S|a. We proceed by induction on
|S| − r. That W (S, r) = w(na, nb, r) for any (S, r) ∈ DG with |S| − r = 0 follows from
property (i) of the w function because, from Lemma 4 part 2, W (S, r) =

∑
j∈S xj for any

(S, r) ∈ DG with |S| − r = 0.
Now suppose that W (S, r) = w(na, nb, r) for any (S, r) ∈ DG with |S| − r ≤ k,

where k ≥ 0. We need to prove that W (S, r) = w(na, nb, r) for any (S, r) ∈ DG with
|S| − r = k + 1. To see this, consider (S, r) ∈ DG with |S| − r = k + 1, where k ≥ 0.
If na = 0 or nb = 0, then W (S, r) = w(na, nb, r) by properties (ii) and (iii) of the w
function because, by Lemma 4 part 10, W (S, r) = xd r

|S|−r+1e for any (S, r) ∈ DG with
xi = x ∀i ∈ S. Hence, suppose that na ≥ 1 and nb ≥ 1.

We first claim that (3) given (S, r) admits solution T with |{i ∈ T |xi = b}| ≤ nb − 1.
Suppose that T solves (3) given (S, r) and that |{i ∈ T |xi = b}| = nb. By Lemma 4
part 1, |T | ≤ r ≤ |S| − 1 and hence |S \ T | ≥ 1 so that, because |{i ∈ T |xi = b}| = nb,
xmaxS\T = a. Let ib ∈ T be such that xib = b. Now consider Tb = (T \{ib})∪{maxS \T}.
By construction

∑
j∈T xj >

∑
j∈Tb xj . Moreover, |T | = |Tb| and (S \ T )′ = (S \ Tb)′ and

thus W ((S \T )′, r−|T |) = W ((S \Tb)′, r−|Tb|) and thus Tb solves (3) given (S, r). Hence,
adding an additional constraint |{i ∈ T |xi = b}| ≤ nb − 1 to the optimization problem in
(3) does not change the value of the problem.

Second, by Lemma 4 part 5, the value of the objective function of the optimization
problem in (3) evaluated at any two T1, T2 ∈ 2S such that |{i ∈ T1|xi = a}| = |{i ∈
T2|xi = a}| and |{i ∈ T1|xi = b}| = |{i ∈ T2|xi = b}| is the same. The optimization
problem in (3) is thus equivalent to

min
ma ∈ {0, . . . , na}
mb ∈ {0, . . . , nb − 1}

max
{
ama + bmb, bdnb−mb−(|S|−r)

|S|−r e+ a
(
dmb−(nb−1)

|S|−r e+ d r−(ma+mb)
|S|−r e

)
Iin(nb−mb−(|S|−r)

|S|−r )
}

(5)
where the second term in the max operator is W ((S \T )′, r−|T |) which, by the induction
hypothesis and property (iv) of the w function, equals w evaluated at (na−ma, nb−mb−
1, r −ma −mb).

For a given ma ∈ {0, . . . , na} and mb ∈ {0, . . . , nb− 1}, the first term in the max oper-

ator in (5) is at least bmb and, we claim, the second term is at least bdnb−mb−(|S|−r)
|S|−r e. This

follows because nb−mb−(|S|−r)
|S|−r = r−na−mb

|S|−r ∈ Z implies that dmb−(nb−1)
|S|−r e = mb−nb

|S|−r + d 1
|S|−re

and that d r−(ma+mb)
|S|−r e ≥ d r−na−mb

|S|−r e = r−na−mb
|S|−r and hence dmb−(nb−1)

|S|−r e + d r−(ma+mb)
|S|−r e ≥

−1 + d 1
|S|−re = 0. Moreover, the first term is at most bmb + a2|S| and the second

term is at most bdnb−mb−(|S|−r)
|S|−r e + a2|S|. The objective function in (5), for a given

mb ∈ {0, . . . , nb − 1}, thus lies in the following interval[
bmax{mb, dnb−mb−(|S|−r)

|S|−r e}, bmax{mb, dnb−mb−(|S|−r)
|S|−r e}+ a2|S|

]
. (6)

Thus, because dnb−mb−(|S|−r)
|S|−r e ∈ Z for any mb ∈ {0, . . . , nb − 1} and because b > 2|S|a, if
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(m∗a,m
∗
b) solves (5), then m∗b is a solution to

min
mb∈{0,...,nb−1}

bmax
{
mb, dnb−mb−(|S|−r)

|S|−r e
}
. (7)

We consider the following three cases.
Case 1: nb − (|S| − r) ≤ 0. Because nb − (|S| − r) ≤ 0, m′b = 0 is the unique solution

to (7) and the value of (7) is bmax{0, 0} = 0. Hence m∗b = 0 for any solution (m∗a,m
∗
b) to

(5). Moreover, nb− (|S|−r) ≤ 0 implies that 0 ≤ nb−1 < |S|−r and hence d− nb−1
|S|−re = 0.

Thus (m′a, 0) solves (5) if m′a is the solution to

min
ma∈{0,...,na}

amax
{
ma, d r−ma

|S|−r e
}
. (8)

The structure of (8) implies that it admits solution m′a = d r
|S|−r+1e, where m′a ≤ na is

implied by nb − (|S| − r) = r − na ≤ 0. The value of (8) equals am′a and hence the
value of (5) is am′a. What remains is to show that w evaluated at (na, nb, r) such that
nb − (|S| − r) ≤ 0 equals ad r

|S|−r+1e. This follows because nb − (|S| − r) ≤ 0 implies that

d− (|S|−r)−nb

|S|−r+1 e = 0 and that d− nb
|S|−r+1e = 0.

Case 2: nb − (|S| − r) > 0 and nb−(|S|−r)
|S|−r+1 /∈ Z. In this case the structure of (7)

implies that it admits solution m′b = dnb−(|S|−r)
|S|−r+1 e, where m′b ≤ nb − 1 is implied by

|S| − r ≥ 1. The value of (7) is bm′b. If
nb−m′b−(|S|−r)

|S|−r /∈ Z, then the objective function in

(5) evaluated at (0,m′b) equals bm′b. If
nb−m′b−(|S|−r)

|S|−r ∈ Z, then dnb−m′b−(|S|−r)
|S|−r e = m′b − 1

and hence the objective function in (5) evaluated at (0,m′b) equals max{bm′b, b(m′b − 1) +

a(dm
′
b−(nb−1)
|S|−r e+d r−m

′
b

|S|−r e)} = bm′b, where the equality follows from b > 2|S|a. In either case,

by the arguments leading to (6), (0,m′b) solves (5) and its value is bm′b. What remains

is to show that w evaluated at (na, nb, r) such that nb − (|S| − r) > 0 and nb−(|S|−r)
|S|−r+1 /∈ Z

equals bdnb−(|S|−r)
|S|−r+1 e, which is immediate.

Case 3: nb− (|S| − r) > 0 and nb−(|S|−r)
|S|−r+1 ∈ Z. In this case the structure of (7) implies

that m′b = nb−(|S|−r)
|S|−r+1 is the unique solution to (7), where m′b ≤ nb − 1 is implied by

|S| − r ≥ 1. The value of (7) is bmax{m′b,m′b} = bm′b. Thus (m′a,m
′
b) solves (5) if m′a is

the solution to

min
ma∈{0,...,na}

amax
{
ma, d

m′b−(nb−1)
|S|−r e+ d r−(ma+m′b)

|S|−r e
}

= min
ma∈{0,...,na}

amax
{
ma, dna−ma

|S|−r e
}

(9)

where the equality follows because we have
m′b−nb

|S|−r = −m′b − 1, and thus dm
′
b−(nb−1)
|S|−r e =

−m′b−1+d 1
|S|−re = −m′b, and

r−m′b
|S|−r = m′b+ na

|S|−r , and thus d r−(ma+m′b)
|S|−r e = m′b+dna−ma

|S|−r e.
The structure of (9) implies that it admits solution m′a = d na

|S|−r+1e and its value is

am′a. Hence (m′a,m
′
b) solves (5) and its value is bm′b + am′a. What remains is to show

that w evaluated at (na, nb, r) such that nb − (|S| − r) > 0 and nb−(|S|−r)
|S|−r+1 ∈ Z equals

bdnb−(|S|−r)
|S|−r+1 e + ad na

|S|−r+1e. This follows because nb−(|S|−r)
|S|−r+1 ∈ Z and because d na−|S|

|S|−r+1e =
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d −nb
|S|−r+1e = d−m′b−

|S|−r
|S|−r+1e = −m′b and d r

|S|+r−1e = d na
|S|−r+1 +m′be = d na

|S|−r+1e+m
′
b. �

Consider the profile x(ε, nb) = (x(ε, nb)i)i∈S such that x(ε, nb)(i) = ε for i ∈ {1, . . . , |S|−
nb}, x(ε, nb)(i) = c−ε(|S|−nb)

nb
for i ∈ {|S| − nb + 1, . . . , |S|}, where c > 0 and nb = k(|S| −

r+ 1) for some k ∈ {1, . . . , b |S|
|S|−r+1c}, where {1, . . . , b |S|

|S|−r+1c} 6= ∅ because |S|
|S|−r+1 ≥ 1.

Then there exists ε̄ > 0 such that, for all ε ∈ (0, ε̄), x(ε, nb) ∈ R|S|++ and
∑

i∈S x(ε, nb)i = c.
Moreover, by Lemma 8 part 2, given x(ε, nb), if (S, r) ∈ DG and r < |S|, we have

W (S, r) = c−ε(|S|−nb)
nb

dnb−(|S|−r)
|S|−r+1 e = c−ε(|S|−nb)

k(|S|−r+1) dk −
|S|−r
|S|−r+1e = c−ε(|S|−nb)

|S|−r+1 . At the same

time Lemma 8 part 1 implies that W (S, r) ≤ c
|S|−r+1 for any profile (xi)i∈S ∈ R|S|++ such

that
∑

i∈S xi = c. The x(ε, nb) thus comes arbitrarily close to the upper bound on W (S, r)
as ε→ 0.

Proposition 12. Consider a subgame starting with state (S, r) ∈ DG. Suppose y /∈ L
and δ > δ̄.

1. An equilibrium exists. If multiple equilibria exist, then

(a) the leader’s payoff is constant across equilibria, and

(b) for all i ∈ N \ S the payoff of member i is constant across equilibria.

2. If the policy passes in an equilibrium, then

(a) it passes in r + 1 rounds,

(b) the equilibrium consists of two phases (possibly empty), a temptation phase fol-
lowed by an exploitation phase,

(c) the set of members included in the temptation phase solves (4), and

(d) if r < |S| and x(r) < xi for some member i ∈ S, then member i is not included
in the temptation phase,

(e) the limit of the leader’s payoff is y −Π(S, r, y) as δ → 1.

3. If y > W (S, r), then the policy passes in all equilibria.

4. If y < W (S, r), then the policy does not pass in any equilibrium.

5. In an equilibrium, if member i ∈ S is approached in state (S, r), then he accepts
a transfer if and only if it is weakly greater than a cutoff. In state (S, r), if i is
dispensable his cutoff is xiδ

r(1− δ), if i is indispensable his cutoff is xiδ
r and if i is

inconsequential his cutoff is 0.

Proof. We prove Proposition 12 by induction on the size of |S|. Before the induction
argument, we deal with several preliminaries. First, we introduce two functions l and c
that define a space of strategies Σ and during the proof we (inductively) specify the l and
c functions such that a profile σ constitutes an equilibrium if and only if σ ∈ Σ. For any
(S, r) ∈ DW , let l(S, r) ⊆ {initiate a vote, stop} ∪ (S ×R+) and for any state (S, r) ∈ DW
and any i ∈ S, let c(S, r, i) ∈ R+. Let H = ∪r∈Z,r≤nHr, where Hr is the set of possible
histories in Γ(N, r). At any h ∈ H, either the leader moves or h = (hl, (i, t)), that is,
a member i responds to the leader’s offer t made at history hl. In the former case, let
(Sh, rh) be the state that corresponds to h. In the latter case, let (Sh, rh) be the state
that corresponds to hl. Let σ̃l be a strategy of the leader that satisfies σ̃l(h) ∈ l(Sh, rh)
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for any h ∈ H at which the leader moves and let Σl be the space of all σ̃l strategies.
Let σ̃i be the strategy of member i ∈ N such that, for each history h ∈ H at which the
leader approaches i with an offer t, σ̃i(h) = accept if and only if t ≥ c(Sh, rh, i). Let
σ̃ = (σ̃l, (σ̃i)i∈N ) be a profile of strategies constructed from the l and c functions and
Σ = Σl × (×i∈N{σ̃i}) be the space of all σ̃ profiles.

States (S, r) ∈ DW with r ≤ 0. For any (S, r) ∈ DW with r ≤ 0 and any i ∈ S,
set l(S, r) = {initiate a vote} and c(S, r, i) = 0. Fix (S, r) ∈ DW with r ≤ 0. Γ(S, r)
admits unique equilibrium in which the principal initiates a vote at any history in which
she moves and any member accepts any transfer at any history in which he moves. Thus,
a profile σ constitutes an equilibrium in Γ(S, r) if and only if σ ∈ Σ and the equilibrium
payoff from (S, r) is y for the principal and −xi for any member i ∈ N .

States (S, r) ∈ DW with r > |S|. For any (S, r) ∈ DW with r > |S| and any i ∈ S, set
l(S, r) = {initiate a vote, stop}∪(S×{0}) and c(S, r, i) = 0. Fix (S, r) ∈ DW with r > |S|.
In any equilibrium of Γ(S, r) the policy does not pass, hence any approached member
accepts any offered transfer and thus the leader never offers strictly positive transfer to
any member. Therefore, a profile σ constitutes an equilibrium in Γ(S, r) only if σ ∈ Σ.
Moreover, any σ̃ ∈ Σ constitutes an equilibrium in Γ(S, r) and thus the equilibrium payoff
from (S, r) is 0 for the leader and for any member i ∈ N .

Initial induction step. We now prove Proposition 12 for any (S, r) ∈ DG with |S| = 1.
Notice that (S, r) ∈ DG and |S| = 1 implies r = 1 and thus W (S, r) = Π(S, r, y) = x(1).

For any (S, r) ∈ DG with |S| = 1 and any i ∈ S, set l(S, r) = {(i, xi)} if y > xi,
l(S, r) = {initiate a vote, stop, (i, 0)} if y < xi and c(S, r, i) = δxi. Fix (S, r) ∈ DG with
|S| = 1 and let S = {i}. In any equilibrium of Γ(S, r), if the leader in (S, r) approaches i
with transfer t, then i’s payoff from rejection is 0, because the game moves to state (∅, 1),
and i’s payoff from accepting is t − δxi, because the game moves to state (∅, 0). Hence,
if approached in (S, r), i accepts t if and only if t ≥ δxi. Note that i is indispensable in
(S, r) because W (∅, 0) = 0 < y < W (∅, 1) =∞. For the leader, thus, the payoff in (S, r)
from initiating a vote or stoping is 0 and the payoff from approaching member i with an
offer t is 0 if t ∈ [0, δxi) and is δy − t if t ≥ δxi. Hence, the leader in (S, r) approaches
i with offer δxi if y > xi and either initiates a vote or stops or approaches i with offer
0 if y < xi. Therefore, a profile σ constitutes an equilibrium in Γ(S, r) only if σ ∈ Σ.
Moreover, any σ̃ ∈ Σ constitutes an equilibrium in Γ(S, r) and thus the equilibrium payoff
from (S, r) is δ(y−xi) for the leader, 0 for member i and −xj for any member j ∈ N \{i}
if y > xi and is 0 for the leader and for any member j ∈ N if y < xi. Because y /∈ L
and xi ∈ L, we have y 6= xi and this concludes the proof of Proposition 12 for all states
(S, r) ∈ DG with |S| = 1.

Induction step from k to k+ 1. Assume Proposition 12 holds for all states (S, r) ∈ DG
with |S| ≤ k, where k ≥ 1. We now prove Proposition 12 for any (S, r) ∈ DG with
|S| = k + 1. Fix (S, r) ∈ DG with |S| = k + 1.

First, we prove part 5. In any equilibrium of Γ(S, r), suppose the leader in (S, r)
approaches i ∈ S with transfer t. Let va be i’s payoff from accepting and vr be i’s payoff
from rejecting. There are three cases to consider.

Case 1: r = 1. If r = 1, we have va = t − δxi, because the game proceeds to state
(S\{i}, r−1), and, by the induction hypothesis, vr = 0 if y < W (S\{i}, r) and vr = −δ2xi
if y > W (S \ {i}, r). In the former case, i accepts the leader’s offer t if and only if t ≥ δxi
and in the latter case i accepts the leader’s offer t if and only if t ≥ δxi(1− δ). Note that,
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because W (S \ {i}, r − 1) = 0 when r = 1, in the former case i is indispensable in (S, r)
and in the latter case i is dispensable in (S, r).

Case 2: r = |S|. If r = |S|, we have vr = 0, because the game proceeds to state
(S\{i}, r), and, by the induction hypothesis, va = t if y < W (S\{i}, r−1) and va = t−δrxi
if y > W (S \ {i}, r − 1). In the former case i accepts the leader’s offer t if and only if
t ≥ 0 and in the latter case i accepts the leader’s offer t if and only if t ≥ δrxi. Note that,
because W (S \ {i}, r) =∞ when r = |S|, in the former case i is inconsequential in (S, r)
and in the latter case i is indispensable in (S, r).

Case 3: r ∈ {2, . . . , |S|−1}. Because y /∈ L, because W (S\{i}, r−1),W (S\{i}, r) ∈ L
by Lemma 4 part 3 and because W (S\{i}, r−1) ≤W (S\{i}, r) by Lemma 4 part 4, there
are three cases to consider: in (S, r), i is either inconsequential, when y < W (S\{i}, r−1),
or indispensable, when y ∈ (W (S \ {i}, r − 1),W (S \ {i}, r)), or dispensable, when y >
W (S \ {i}, r). By the induction hypothesis, if i is inconsequential we have va = t and
vr = 0 and i accepts the leader’s offer t if and only if t ≥ 0, if i is indispensable we have
va = t− δrxi and vr = 0 and i accepts the leader’s offer t if and only if t ≥ δrxi, and if i
is dispensable we have va = t− δrxi and vr = −δr+1xi and i accepts the leader’s offer t if
and only if t ≥ δrxi(1− δ).

For any i ∈ S, set c(S, r, i) = 0 if i is inconsequential in (S, r), set c(S, r, i) = δrxi if i
is indispensable in (S, r) and set c(S, r, i) = δrxi(1− δ) if i is dispensable in (S, r).

We now prove that Γ(S, r) admits an equilibrium and that the leader’s payoff is con-
stant across equilibria, parts 1 and 1a. By construction, a profile σ constitutes an equi-
librium in any proper subgame of Γ(S, r) if and only if σ ∈ Σ. It thus suffices to prove
that, for any σ̃ ∈ Σ, the leader has an optimal action at the initial history of Γ(S, r)
when her payoff in proper subgames of Γ(S, r) is determined by σ̃, and that the payoff the
optimal action provides to the leader is independent of σ̃. That the payoff the optimal
action provides to the leader is independent of σ̃ follows from the induction hypothesis;
the leader’s payoff from states (S \ {i}, r) and (S \ {i}, r − 1) is, for any i ∈ S, constant
across equilibria and the payoff from initiating a vote or stopping is 0.

To shows that the leader has an optimal action at the initial history of Γ(S, r), fix σ̃ ∈ Σ
and, ∀i ∈ S, let ai be the leader’s equilibrium payoff from (S \ {i}, r− 1) and let ri be the
leader’s equilibrium payoff from (S \ {i}, r). Let A = {initiate a vote, stop}∪ (S×R+) be
the leader’s action space at the initial history of Γ(S, r) and let v : A→ R be the leader’s
payoff function at the initial history of Γ(S, r). Clearly, v(initiate a vote) = v(stop) = 0.
For any (i, t) ∈ S × R+, we have

v(i, t) =

{
δri if t < c(S, r, i)

δai − t if t ≥ c(S, r, i)
. (10)

The leader’s payoff maximization problem reads maxa∈A v(a). For any i ∈ S, maxt∈R+ v(i, t)
has a solution and we can set vi = maxt∈R+ v(i, t). Because maxa∈A v(a) is equivalent to
max {0,maxi∈S {vi}} and because the latter problem is finite and hence admits a solu-
tion, the former problem admits a solution as well. Set l(S, r) = arg maxa∈A v(a). Part
1b follows from parts 2a, 3 and 4 we prove below.

We now prove part 2a. By construction, σ constitutes an equilibrium in Γ(S, r) if and
only if σ ∈ Σ. Fix σ̃ ∈ Σ in which the policy passes and suppose, towards a contradiction,
that on the equilibrium path the leader approaches r+1 or more members. If the member i
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approached in (S, r) accepts the leader’s offer then the game proceeds into state (S\{i}, r−
1) in which, by the induction hypothesis, the leader on the equilibrium path approaches
r−1 members. Hence, it must be the case that the leader in (S, r) approaches i0 ∈ S with
an offer t0 < c(S, r, i0), the game proceeds to (S\{i0}, r) and starting from (S\{i0}, r) the
leader’s equilibrium sequence of actions is (ia, ta)

r
a=1 along which all approached members

accept. For a ∈ {1, . . . , r}, let Sa = S \∪a−1c=0{ic}. Then the equilibrium sequence of states
is (Sa, r + 1 − a)ra=1 and, ∀a ∈ {1, . . . , r}, ia is offered ta in state (Sa, r + 1 − a) and
hence, because ia accepts ta, we have ta = c(Sa, r + 1− a, ia). Because the policy passes
in σ̃, all agents in (ia)

r
a=1, when approached, are either indispensable or dispensable.

Let T = {ia|a ∈ {1, . . . , r}, y < W (Sa \ {ia}, r + 1 − a)} be the set of indispensable
agents approached and let E = {ia|a ∈ {1, . . . , r}, y > W (Sa \ {ia}, r + 1 − a)} be
the set of dispensable agents approached. By construction, ∀a ∈ {1, . . . , r}, we have
c(Sa, r + 1 − a, ia) = δr+1−axia if ia ∈ T and c(Sa, r + 1 − a, ia) = δr+1−axia(1 − δ) if
ia ∈ E. The leader’s equilibrium payoff from (S, r) under σ̃ is thus

δr+1y−
∑

a∈{1,...,r},ia∈T

δaδr+1−axia−
∑

a∈{1,...,r},ia∈E

δaδr+1−axia(1−δ) = δr+1

(
y −

∑
i∈T

xi −
∑
i∈E

xi(1− δ)

)
.

(11)
Because y /∈ L, we have y 6=

∑
i∈T xi and hence, because σ̃ constitutes an equilibrium,

y >
∑

i∈T xi. Because δ > δ̄ ≥ δ̄a, we thus have y −
∑

i∈T xi −
∑

i∈E xi(1− δ) > 0.
We now construct σ̃′ that constitutes a profitable deviation for the leader. For a ∈

{1, . . . , r}, let S◦a = S \ ∪a−1c=1{ic} and note that S◦a \ {i0} = Sa. Let σ̃′ be identical
to σ̃ except that the leader, ∀a ∈ {1, . . . , r}, approaches member ia with an offer ta
at any history that corresponds to state (S◦a, r + 1 − a). We now argue that, ∀a ∈
{1, . . . , r}, member ia offered ta in state (S◦a, r + 1 − a) accepts. For any ia ∈ T this
is immediate because we have c(Sa, r + 1 − a, ia) = δr+1−axia ≥ c(S◦a, r + 1 − a, ia).
For any ia ∈ E, we have y > W (Sa \ {ia}, r + 1 − a) = W (S◦a \ {i0, ia}, r + 1 − a) ≥
W (S◦a \ {ia}, r+ 1− a), where the weak inequality follows by Lemma 4 part 5, and hence
c(S◦a, r + 1 − a, ia) = δr+1−axia(1 − δ) = c(Sa, r + 1 − a, ia). Because, ∀a ∈ {1, . . . , r},
member ia offered ta in state (S◦a, r+ 1− a) accepts, the leader’s payoff from (S, r) under
σ̃′ is δr(y −

∑
i∈T xi −

∑
i∈E xi) > δr+1(y −

∑
i∈T xi −

∑
i∈E xi), which establishes the

desired contradiction.
To prove part 2b, it suffices to prove that given any σ̃ ∈ Σ in which the policy passes,

if there is a dispensable member in (S, r), then the leader at the initial history of Γ(S, r)
approaches a dispensable member i with an offer that i accepts and that there is a dis-
pensable member in the state the game proceeds to, in (S \ {i}, r− 1). The see the latter
claim, if i ∈ S is dispensable in (S, r) we have y > W (S \ {i}, r), by Lemma 4 part 6
we have, ∀j ∈ S \ {i}, W (S \ {i}, r) ≥ W (S \ {i, j}, r − 1), and thus any j ∈ S \ {i} is
dispensable in (S\{i}, r−1). To see the former claim, fix σ̃ ∈ Σ in which the policy passes.
Let E = {i ∈ S|y > W (S \ {i}, r)}, T = {i ∈ S|y ∈ (W (S \ {i}, r − 1),W (S \ {i}, r))}
and Z = {i ∈ S|y < W (S \ {i}, r − 1)} be, respectively, the set of dispensable, indispens-
able and inconsequential members in (S, r). The leader in equilibrium does not approach
i ∈ Z at the initial history of Γ(S, r) because the policy passes in σ̃. Suppose, towards
a contradiction, that the leader in equilibrium at the initial history of Γ(S, r) approaches
i0 ∈ T and E 6= ∅. By part 2a, the leader in equilibrium approaches i0 with offer t0 that
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i0 accepts, that is, with t0 = c(S, r, i0) = δrxi0 , where the second equality follows from
i0 ∈ T , and hence the leader’s equilibrium payoff from (S, r) is at most δr(y − xi0).

Let (ia)
r
a=1 be a sequence of members and, ∀a ∈ {1, . . . , r}, let Sa = S \ ∪a−1c=1{ic} and

ta = δr+1−axia(1− δ). Suppose that the sequence of members (ia)
r
a=1 is such that i1 ∈ E

and ia ∈ Sa for any a ∈ {2, . . . , r}. Consider σ̃′ identical to σ̃ except that the leader, ∀a ∈
{1, . . . , r}, approaches member ia with an offer ta at any history that corresponds to state
(Sa, r+ 1− a). We now argue that, ∀a ∈ {1, . . . , r}, member ia offered ta in state (Sa, r+
1 − a) accepts. To see this, it suffices to argue that, ∀a ∈ {1, . . . , r}, ia is dispensable in
state (Sa, r+1−a). By construction, i1 ∈ E and hence i1 is dispensable in (S, r) = (S1, r).
Note that because i1 is dispensable in (S, r), we have y > W (S \ {i1}, r). By Lemma 4
part 6, we have, ∀a ∈ {2, . . . , r}, W (S \ {i1}, r) ≥ W (S \ ∪ac=1{ic}, r + 1 − a) = W (Sa \
{ia}, r+1−a). Therefore, ∀a ∈ {2, . . . , r}, ia is dispensable in (Sa, r+1−a). Because the
leader approaches all members in the (ia)

r
a=1 sequence with offers the members accept,

her payoff from σ̃′ is δry−
∑

a∈{1,...,r} δ
a−1δr+1−axia(1−δ) = δr(y−

∑
a∈{1,...,r} xia(1−δ)).

Because δ > δ̄ ≥ δ̄b, we have xi0 ≥ x1 > nxn(1 − δ) ≥
∑

a∈{1,...,r} xia(1 − δ) and thus
y − xi0 < y −

∑
a∈{1,...,r} xia(1− δ), which establishes the desired contradiction.

We now prove part 2c. Fix σ̃ ∈ Σ in which the policy passes. Let (ia)
r
a=1 be the

equilibrium sequence of approached members. By part 2a, this sequence consists of r
members. For a ∈ {1, . . . , r}, let Sa = S \ ∪a−1c=1{ic} and ta = c(Sa, r + 1 − a, ia). On
the equilibrium path, ∀a ∈ {1, . . . , r}, the leader approaches ia with an offer ta in state
(Sa, r + 1− a) and ia accepts ta. Let T = {ia|a ∈ {1, . . . , r}, y < W (Sa \ {ia}, r + 1− a)}
be the set indispensable agents approached and let E = {ia|a ∈ {1, . . . , r}, y > W (Sa \
{ia}, r + 1 − a)} be the set of dispensable agents approached. By part 5, ta = δr+1−axia
for any ia ∈ T and ta = δr+1−axia(1− δ) for any ia ∈ E. The leader’s equilibrium payoff
from σ̃ is thus δr(y −

∑
i∈T xi −

∑
i∈E xi(1− δ)).

When r = |S|, we have T = S because, ∀a ∈ {1, . . . , r}, W (Sa \ {ia}, r + 1− a) =∞.
By Lemma 5 part 2, S is a solution to (4). Hence, suppose r < |S|. Clearly, T ∈ 2S

and we argue that y > W ((S \ T )′, r − |T |). We have either |T | = r or |T | < r. In
the former case, W ((S \ T )′, r − |T |) = 0. In the latter case, for the first dispensable
member approached, i|T |+1, we have y > W (S|T |+1 \ {i|T |+1}, r − |T |). By part 2b, all
indispensable members are approached before any dispensable member is approached and
hence S|T |+1 = S\T . Because i|T |+1 is approached in state (S|T |+1, r−|T |) = (S\T, r−|T |),
we have i|T |+1 ≤ maxS \T and hence, by Lemma 4 part 5, W ((S \T )\{i|T |+1}, r−|T |) ≥
W ((S \ T ) \ {maxS \ T}, r − |T |). Thus y > W ((S \ T )′, r − |T |). Because T ∈ 2S and
y > W ((S \ T )′, r − |T |), it suffices to prove that To ∈ 2S such that

∑
j∈T xj >

∑
j∈To xj

and y > W ((S \ To)′, r − |To|)) does not exist.
Suppose, towards a contradiction, that To ∈ 2S such that

∑
j∈T xj >

∑
j∈To xj and

y > W ((S \ To)′, r − |To|)) exists. If |To| > r, then any Tb ⊆ To such that |Tb| = r
satisfies

∑
j∈To xj >

∑
j∈Tb xj and W ((S \ To)′, r − |To|)) = W ((S \ Tb)′, r − |Tb|)) and

hence it is without loss of generality to assume that |To| ≤ r. Let (i◦a)
r
a=1 be a sequence

of members and, ∀a ∈ {1, . . . , r}, let S◦a = S \ ∪a−1c=1{i◦c}. Suppose that the sequence
of members (i◦a)

r
a=1 is such that i◦a ∈ To ∀a ∈ {1, . . . , |To|}, i◦|To|+1 = maxS \ To, and

i◦a ∈ S◦a ∀a ∈ {|To| + 2, . . . , r}. Let Eo = {|To| + 1, . . . , r}. Let t◦a = δr+1−axi◦a for
any i◦a ∈ To and t◦a = δr+1−axi◦a(1 − δ) for any i◦a ∈ Eo. Consider σ̃′ identical to σ̃
except that the leader, ∀a ∈ {1, . . . , r}, approaches member i◦a with an offer t◦a at any
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history that corresponds to state (S◦a, r + 1 − a). We now argue that, ∀a ∈ {1, . . . , r},
member i◦a offered t◦a in state (S◦a, r + 1 − a) accepts. To see this, for any i◦a ∈ To we
have t◦a = δr+1−axi◦a and hence member i◦a offered t◦a in state (S◦a, r + 1 − a) accepts.
To see that any i◦a ∈ Eo accepts t◦a in (S◦a, r + 1 − a), it suffices to argue that any i◦a ∈
Eo is dispensable in (S◦a, r + 1 − a). Member i◦|To|+1 = maxS \ To is approached in

(S◦|To|+1, r−|To|) = (S \To, r−|To|) and we have y > W ((S \To)′, r−|To|). Thus i◦|To|+1 is

dispensable in (S◦|To|+1, r−|To|). Because i◦|To|+1 is dispensable in (S◦|To|+1, r−|To|), we have

y > W (S\∪|To|+1
c=1 {i◦c}, r+1−(|To|+1)). By Lemma 4 part 6, we have, ∀a ∈ {|To|+2, . . . , r},

W (S\∪|To|+1
c=1 {i◦c}, r+1−(|To|+1)) ≥W (S\∪ac=1{i◦c}, r+1−a). Thus, ∀a ∈ {|To|+2, . . . , r},

y > W (S \ ∪ac=1{i◦c}, r + 1− a) and thus i◦a is dispensable in (S◦a, r + 1− a). Because the
leader approaches all members in the (i◦a)

r
a=1 sequence with offers the members accept,

her payoff from σ̃′ is δr(y −
∑

i∈To xi −
∑

i∈Eo
xi(1 − δ)). Because δ > δ̄ ≥ δ̄c, we have∑

i∈To xi+
∑

i∈Eo
xi(1−δ) ≤

∑
i∈To xi+nxn(1−δ) <

∑
i∈T xi ≤

∑
i∈T xi+

∑
i∈E xi(1−δ)

and thus y−
∑

i∈T xi−
∑

i∈E xi(1−δ) < y−
∑

i∈To xi−
∑

i∈Eo
xi(1−δ), which establishes

the desired contradiction. Part 2d now follows from part 2c and Lemma 5 part 9.
We now prove part 2e. Fix σ̃ ∈ Σ in which the policy passes. Let (ia)

r
a=1 be the

equilibrium sequence of approached members. By part 2a, this sequence consists of r
members. For a ∈ {1, . . . , r}, let Sa = S \ ∪a−1c=1{ic} and ta = c(Sa, r + 1 − a, ia). On
the equilibrium path, ∀a ∈ {1, . . . , r}, the leader approaches ia with an offer ta in state
(Sa, r + 1− a) and ia accepts ta. Let T = {ia|a ∈ {1, . . . , r}, y < W (Sa \ {ia}, r + 1− a)}
be the set indispensable agents approached and let E = {ia|a ∈ {1, . . . , r}, y > W (Sa \
{ia}, r + 1 − a)} be the set of dispensable agents approached. By part 5, ta = δr+1−axia
for any ia ∈ T and ta = δr+1−axia(1− δ) for any ia ∈ E. The leader’s equilibrium payoff
from σ̃ is thus δr(y −

∑
i∈T xi −

∑
i∈E xi(1 − δ)). By part 2c, T is a solution to (4) and

hence
∑

j∈T xj = Π(S, r, y). We thus have l(δ) ≤ δr(y−
∑

i∈T xi−
∑

i∈E xi(1−δ)) ≤ u(δ),
where

l(δ) = δr(y −Π(S, r, y)− (1− δ)rxn)

u(δ) = y −Π(S, r, y).
(12)

The result now follows by the squeeze lemma because limδ→1 l(δ) = limδ→1 u(δ) = y −
Π(S, r, y)

We now prove part 3. Suppose, towards a contradiction, that y > W (S, r) and the
policy does not pass in some σ̃ ∈ Σ. Fix σ̃ ∈ Σ in which the policy does not pass. The
leader’s payoff from σ̃ is thus 0. If r = |S|, set T = S. Because W (S, r) =

∑
i∈S xi when

r = |S|, y > W (S, r) implies y >
∑

i∈S xi. If r < |S|, let T ∈ 2S be a solution to (3). Thus
W (S, r) = max{

∑
i∈T xi,W ((S \ T )′, r − |T |)} so that y > W (S, r) implies y >

∑
i∈T xi

and y > W ((S \ T )′, r − |T |).
Let (i◦a)

r
a=1 be a sequence of members and, ∀a ∈ {1, . . . , r}, let S◦a = S \ ∪a−1c=1{i◦c}.

Suppose that the sequence of members (i◦a)
r
a=1 is such that i◦a ∈ T ∀a ∈ {1, . . . , |T |},

i◦|T |+1 = maxS \ T , and i◦a ∈ S◦a ∀a ∈ {|T | + 2, . . . , r}. Let E = {|T | + 1, . . . , r}. Let

t◦a = δr+1−axi◦a for any i◦a ∈ T and t◦a = δr+1−axi◦a(1 − δ) for any i◦a ∈ E. Consider σ̃′

identical to σ̃ except that the leader, ∀a ∈ {1, . . . , r}, approaches member i◦a with an
offer t◦a at any history that corresponds to state (S◦a, r + 1 − a). We now argue that,
∀a ∈ {1, . . . , r}, member i◦a offered t◦a in state (S◦a, r + 1− a) accepts. To see this, for any
i◦a ∈ T we have t◦a = δr+1−axi◦a and hence member i◦a offered t◦a in state (S◦a, r + 1 − a)
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accepts. To see that any i◦a ∈ E accepts t◦a in (S◦a, r + 1− a), it suffices to argue that any
i◦a ∈ E is dispensable in (S◦a, r + 1 − a). Member i◦|T |+1 = maxS \ T is approached in

(S◦|T |+1, r− |T |) = (S \T, r− |T |) when, by y > W ((S \T )′, r− |T |), dispensable. Because

i◦|T |+1 is dispensable in (S◦|T |+1, r− |T |), we have y > W (S \ ∪|T |+1
c=1 {i◦c}, r+ 1− (|T |+ 1)).

By Lemma 4 part 6, we have, ∀a ∈ {|T | + 2, . . . , r}, W (S \ ∪|T |+1
c=1 {i◦c}, r + 1 − (|T | +

1)) ≥ W (S \ ∪ac=1{i◦c}, r + 1 − a). Thus, ∀a ∈ {|T | + 2, . . . , r}, y > W (S \ ∪ac=1{i◦c}, r +
1 − a) and thus i◦a is dispensable in (S◦a, r + 1 − a). Because the leader approaches all
members in the (i◦a)

r
a=1 sequence with offers the members accept, her payoff from σ̃′ is

δr(y −
∑

i∈T xi −
∑

i∈E xi(1 − δ)). Because δ > δ̄ ≥ δ̄a and y >
∑

i∈T xi, we have
0 < y −

∑
i∈T xi − nxn(1 − δ) ≤ y −

∑
i∈T xi −

∑
i∈E xi(1 − δ), which establishes the

desired contradiction.
We now prove part 4. Suppose, towards a contradiction, that y < W (S, r) and the

policy passes in some σ̃ ∈ Σ. Fix σ̃ ∈ Σ in which the policy passes. Suppose r = |S|.
By part 2c and Lemma 5 part 2, all members in S are approached on the equilibrium
path and each member is approached in a state in which he is indispensable. The leader’s
payoff from σ̃ is thus δr(y−

∑
i∈S xi) < 0, where the inequality follows from y < W (S, r),

because W (S, r) =
∑

i∈S xi when r = |S|. The leader thus has a profitable deviation to
stop at the initial history of Γ(S, r), a contradiction.

Suppose r < |S| and let T be the set of members approached on the equilibrium path
when indispensable. By parts 2a and 5, the leader’s equilibrium payoff is at most δr(y −∑

i∈T xi). From y /∈ L, we have y 6=
∑

i∈T xi and from σ̃ ∈ Σ, we have y −
∑

i∈T xi ≥ 0.
Thus y−

∑
i∈T xi > 0. Moreover, by part 2c, T solves (4) and hence y > W ((S\T )′, r−|T |).

Thus y > max{
∑

i∈T xi,W ((S \ T )′, r − |T |)} ≥ W (S, r), which establishes the desired
contradiction.

This concludes the proof of the induction step from k to k+ 1, for a given (S, r) ∈ DG
with |S| = k + 1. Repeating the same step for all states (S, r) ∈ DG with |S| = k + 1
completes the specification of the l and c functions that define the space of strategies
Σ. �

6.4 Proof of Proposition 8

Let t = (t1, . . . , tn), where ti ≥ 0 for each i ∈ N = {1, . . . , n}, be a profile of transfers
and let a = (a1, . . . , an) be the profile of members’ actions, where for each i ∈ N , ai = 0
indicates rejection and ai = 1 indicates acceptance.

Consider the leader’s decision in the second period, that is, in a subgame starting with
t and a. The leader’s equilibrium actions are as follows. If

∑
i∈N ai ≥ q and

∑
i∈N aiti <

y, then the leader initiates a vote and hence the policy passes. If
∑

i∈N ai ≥ q and∑
i∈N aiti > y, then the leader stops and hence the policy does not pass. If

∑
i∈N ≤ q− 1

then the leader stops or initiates a vote when
∑

i∈N ti = 0 and stops when
∑

i∈N ti > 0
and hence the policy does not pass.

Consider the members’ decision in the first period given t. Let Γ(t) be the subgame
that starts at the history in which the leader’s offer is t. Assume the sequence in which
members move in Γ(t) is (1, 2, . . . , n). This assumption is without loss of generality
because the argument below does not invoke that xi is weakly increasing in i. Let Hi(t) be
the set of histories in Γ(t) in which member i ∈ N moves. For any history h ∈ ∪i∈NHi(t)
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in which member i ∈ N moves, let a(h) = (a1(h), . . . , ai−1(h)) be the profile of actions of
the members moving before i and let #h =

∑
j∈{1,...,i−1} aj(h) +

∑
j∈{i+1,...,n} I(tj ≥ xj)

be the number of members who either move before i and accepted at history h or move
after i and have been offered transfers weakly above their loss. We prove the following
two lemmas.17

Lemma 10. Let σ(t) be an equilibrium of Γ(t). Suppose
∑

i∈N ti < y. Consider h ∈
∪i∈NHi(t) at which member i moves. Then, in σ(t) starting from h, the policy

1. passes if either #h = q − 1 and ti ≥ xi or #h ≥ q,
2. does not pass if either #h = q − 1 and ti < xi or #h ≤ q − 2.

Proof. Fix t, equilibrium σ(t) of Γ(t) and suppose that
∑

i∈N ti < y. We proceed by
backward induction.

Consider hn ∈ Hn(t) at which member n moves. Irrespective of n’s action, in σ(t)
starting from hn, the policy does not pass if #hn ≤ q−2 and the policy passes if #hn ≥ q.
If #hn = q − 1, then we have

∑
j∈{1,...,n−1} aj(hn) = q − 1 and hence the policy passes

if member n accepts and does not pass if n rejects. The payoff from the two actions is
−xn + tn and 0 respectively. Because σ(t) constitutes an equilibrium, in σ(t) starting
from hn, n accepts and the policy passes if −xn + tn ≥ 0 and rejects and the policy does
not pass if −xn + tn < 0.

Now suppose the lemma holds for each history h ∈ ∪i∈{k+1,...,n}Hi(t), where k ∈
{1, . . . , n − 1}. We need to prove that the lemma holds for each history hk ∈ Hk(t).
Consider hk ∈ Hk(t) at which member k moves. Note that (i) if k accepts and xk+1 ≥ tk+1,
then the game proceeds to hk+1 with #hk+1 = #hk, (ii) if k accepts and xk+1 < tk+1, then
the game proceeds to hk+1 with #hk+1 = #hk + 1, (iii) if k rejects and xk+1 ≥ tk+1, then
the game proceeds to hk+1 with #hk+1 = #hk − 1, and (iv) if k rejects and xk+1 < tk+1,
then the game proceeds to hk+1 with #hk+1 = #hk.

If #hk ≤ q − 2, then the game either proceeds to hk+1 with #hk+1 ≤ q − 2, in which
case the policy does not pass in σ(t) starting from hk+1 by the induction hypothesis, or
proceeds to hk+1 with #hk+1 = q − 1, in which case we have xk+1 < tk+1 and the policy
does not pass in σ(t) starting from hk+1 by the induction hypothesis. In either case the
policy does not pass in σ(t) starting from hk.

If #hk ≥ q, then the game either proceeds to hk+1 with #hk+1 ≥ q, in which case the
policy passes in σ(t) starting from hk+1 by the induction hypothesis, or proceeds to hk+1

with #hk+1 = q − 1, in which case we have xk+1 ≥ tk+1 and the policy passes in σ(t)
starting from hk+1 by the induction hypothesis. In either case the policy passes in σ(t)
starting from hk.

If #hk = q − 1 and member k accepts, then the game either proceeds to hk+1 with
#hk+1 = q, in which case the policy passes in σ(t) starting from hk+1 by the induction
hypothesis, or proceeds to hk+1 with #hk+1 = q − 1, in which case we have xk+1 ≥ tk+1

and the policy passes in σ(t) starting from hk+1 by the induction hypothesis. In either
case the policy passes in σ(t) starting from hk when member k accepts.

If #hk = q − 1 and member k rejects, then the game either proceeds to hk+1 with
#hk+1 = q − 2, in which case the policy does not pass in σ(t) starting from hk+1 by the

17Whenever the leader offers transfers the payoffs are received in the second period. The lemmas thus work
with the un-discounted payoffs in order to minimize the notation.
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induction hypothesis, or proceeds to hk+1 with #hk+1 = q − 1, in which case we have
xk+1 < tk+1 and the policy does not pass in σ(t) starting from hk+1 by the induction
hypothesis. In either case the policy does not pass in σ(t) starting from hk when member
k rejects.

The payoff of member k from the two actions at hk with #hk = q− 1 is thus −xk + tk
and 0 respectively. Because σ(t) constitutes an equilibrium, in σ(t) starting from hk with
#hk = q − 1, k accepts and the policy passes if −xk + tk ≥ 0 and rejects and the policy
does not pass if −xk + tk < 0. �

Lemma 11. Let σ(t) be an equilibrium of Γ(t) and let a be the equilibrium members’
action profile. Suppose the policy passes in σ(t). Then

1.
∑

i∈N aiti =
∑

i∈N ti and

2. |{i ∈ N |ti ≥ xi}| ≥ q.

Proof. Fix t, equilibrium σ(t) of Γ(t), the equilibrium members’ action profile a and
suppose that the policy passes in σ(t).

Part 1: It suffices to prove that, ∀i ∈ N , ti > 0 implies ai = 1. Suppose, towards a
contradiction, that ti > 0 and ai = 0 for some i ∈ N . The payoff of member i from the
equilibrium action ai = 0 is −xi because the policy passes in σ(t). Suppose member i
deviates to a′i = 1. The payoff from the deviation is either at least 0, when the policy
does not pass following the deviation, or −xi + ti, when the policy passes following the
deviation. In either case, the deviation to a′i is profitable.

Part 2: It suffices to prove that for any h ∈ ∪i∈NHi(t) at which member i moves, the
policy does not pass in σ(t) starting from h if either #h = q−1 and ti < xi or #h ≤ q−2.
We proceed by backward induction.

Consider hn ∈ Hn(t) at which member n moves. If #hn ≤ q− 2, then the policy does
not pass in σ(t) starting from hn irrespective of member n’s action. If #hn ≤ q − 1, we
have

∑
j∈{1,...,n−1} aj(hn) = q − 1 and hence the policy does not pass if member n rejects

and either does not pass or passes if member n accepts. In the former case the policy does
not pass in σ(t) starting from hn. In the latter case, because the payoff from rejection
is 0 while the payoff from acceptance is −xn + tn, because tn < xn, and because σ(t)
constitutes an equilibrium, member n rejects and the policy does not pass in σ(t) starting
from hn.

Now suppose that for each history h ∈ ∪i∈{k+1,...,n}Hi(t) at which member i moves,
where k ∈ {1, . . . , n−1}, the policy does not pass in σ(t) starting from h if either #h = q−1
and ti < xi or #h ≤ q − 2. We need to prove that for each history hk ∈ Hk(t) at which
member k moves, the policy does not pass in σ(t) starting from hk if either #hk = q − 1
and tk < xk or #hk ≤ q − 2. Consider hk ∈ Hk(t) at which member k moves.

If #hk ≤ q − 2, then the game either proceeds to hk+1 with #hk+1 ≤ q − 2, in which
case the policy does not pass in σ(t) starting from hk+1 by the induction hypothesis, or
proceeds to hk+1 with #hk+1 = q − 1, in which case we have xk+1 < tk+1 and the policy
does not pass in σ(t) starting from hk+1 by the induction hypothesis. In either case the
policy does not pass in σ(t) starting from hk.

If #hk = q − 1 and member k rejects, then the game either proceeds to hk+1 with
#hk+1 = q − 2, in which case the policy does not pass in σ(t) starting from hk+1 by the
induction hypothesis, or proceeds to hk+1 with #hk+1 = q − 1, in which case we have
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xk+1 < tk+1 and the policy does not pass in σ(t) starting from hk+1 by the induction
hypothesis. In either case the policy does not pass in σ(t) starting from hk when member
k rejects.

If #hk = q − 1 and member k accepts, then the game proceeds to hk+1 and the
policy, in σ(t) starting from hk+1, either does not pass or passes. In the former case the
policy does not pass in σ(t) starting from hk. In the latter case, because the payoff from
rejection is 0 while the payoff from acceptance is −xk + tk, because tk < xk, and because
σ(t) constitutes an equilibrium, member k rejects and the policy does not pass in σ(t)
starting from hk. �

We now prove Proposition 8. For the first part, let σ be an equilibrium of the si-
multaneous vote-buying game with transfer promises. Suppose, towards a contradiction,
that the policy passes in σ. Let t be the equilibrium profile of transfers and let a be the
equilibrium members’ action profile. Because σ is an equilibrium, σ(t) is an equilibrium
of Γ(t). Thus, by Lemma 11 parts 1 and 2,

∑
i∈N aiti =

∑
i∈N ti ≥

∑q
i=1 xi. Because∑q

i=1 xi > y, the leaders equilibrium payoff δ(y −
∑

i∈N aiti) < 0, and hence choosing to
stop in the first period is a profitable deviation for the leader.

For the second part, let σ be an equilibrium of the simultaneous vote-buying game
with transfer promises. Suppose, towards a contradiction, that the policy does not pass
in σ. Then the leader’s equilibrium payoff is at most 0. Consider a deviation for the
leader to t′ = (x1, . . . , xq, 0, . . . , 0). Let σ(t′) be an equilibrium of Γ(t′), which exists by
standard backward induction argument. Because

∑
i∈N t

′
i =

∑q
i=1 xi < y, and because

the initial history h1 of Γ(t′) satisfies #h1 = q − 1 and t1 ≥ x1, Lemma 10 part 1 implies
that the policy passes in σ(t′). Hence, by Lemma 11 part 1, the leader’s payoff from the
deviation is δ(y −

∑
i∈N ait

′
i) = δ(y −

∑
i∈N t

′
i) = δ(y −

∑q
i=1 xi) > 0. This proves part

(a).
To prove the remaining parts, let σ be an equilibrium of the simultaneous vote-buying

game with transfer promises and let t be the equilibrium profile of transfers. By part
(a), the policy passes in σ. Thus σ(t) is an equilibrium of Γ(t) and the policy passes in
σ(t). Hence |{i ∈ N |ti ≥ xi}| ≥ q by Lemma 11 part 2. Moreover,

∑
i∈N ti =

∑q
i=1 xi. If

not, then t′ would be a profitable deviation for the leader. Thus ti ∈ {0, xi} ∀i ∈ N and
|{i ∈ N |ti ≥ xi}| = q. �

6.5 Proof of Proposition 9

We first prove part (a) by contradiction. Assume y − t >
∑

j∈Sr xj and there exists
an equilibrium in Γ(S, r, t) in which the policy does not pass. The leader’s payoff in
this equilibrium is 0. Consider the strategy of offering r members in S each xi + ε.
Since each member would accept the offer, the policy passes and the leader’s payoff is
y − t −

∑
j∈Sr xj − rε > 0 for ε > 0 sufficiently low. Hence, the leader has a profitable

deviation, a contradiction.
We next prove part (b) by induction. First consider |S| = r. The same argument as

in the proof of Proposition 1 shows that the policy doe not pass in any equilibrium.
Next, suppose that part (b) holds for |S| − r ≤ k where 0 ≤ k < |S|. We prove

that it also holds for |S| − r = k + 1. Suppose, towards a contradiction, that there
exists an equilibrium in Γ(S, r, t) in which the policy passes. Suppose in this equilibrium,
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the leader approaches a set of members Ŝ ⊆ S in the first period of Γ(S, r, t). Suppose
member i′ is the last one who makes the acceptance/rejection decision in Ŝ. Given the
induction hypothesis, when all preceding members in Ŝ have rejected the offers, if i′

rejects the leader’s offer, then the policy does not pass in any equilibrium in the resulting
subgame Γ(S \ Ŝ, r, t) since y − t <

∑
j∈(S\Ŝ)r xj . Hence, when all preceding members in

Ŝ have rejected the offers, member i′ accepts the offer t′i if and only if t′i ≥ x′i. A similar
argument shows that this is true for any member i ∈ Ŝ. Given that the policy passes in
equilibrium in Γ(S, r, t), the transfer ti offered to i ∈ Ŝ satisfies ti ≥ xi. Note that in the
subgame that follows the acceptance of the members in i ∈ Ŝ, Γ(S \ Ŝ, r−|Ŝ|, t+

∑
i∈Ŝ ti),

we have y − t −
∑

i∈Ŝ ti ≤ y − t −
∑

i∈Ŝ xi. Since y − t <
∑

j∈Sr xj , it follows that
y− t−

∑
i∈Ŝ xi <

∑
j∈(S\Ŝ)r−|Ŝ| xj and therefore y− t−

∑
i∈Ŝ ti <

∑
j∈(S\Ŝ)r−|Ŝ| xj . By the

induction hypothesis, the policy does not pass in any equilibrium in Γ(S \ Ŝ, r − |Ŝ|, t +∑
i∈Ŝ ti), a contradiction. Hence, part (b) holds. �
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